Skip to main content
Log in

Indoor Aerosol Particle Deposition in an Empty Office

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The size- and time-resolved indoor/outdoor aerosol concentration relationships were studied experimentally in an empty office without internal particle sources. Two Scanning Mobility Particle Sizers (SMPS) and an Aerodynamic Particle Sizer (APS) sampled alternately from indoor and outdoor, together covering the size range 3–10,000 nm. The results showed that the indoor aerosol concentration depends mainly on the air exchange and deposition rates, and the outdoor concentration. At higher air exchange rates the indoor aerosol concentration approaches the outdoor one. This was observed for the accumulation mode particles. The size-dependent deposition rates were estimated using a simple aerosol dynamics experiment. It was based on equilibration of the indoor/outdoor concentrations by opening windows and analyzing the concentration decay curves after the windows were closed. For this purpose a simple mass balance model was used. The overall loss rate and the asymptotic value of indoor concentration were found by applying a non-linear least squares method on the time dependence of the indoor concentrations. The air exchange rate was estimated from the overall loss rate and the steady state values of the indoor/outdoor concentration of the accumulation mode particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abt, E., Suh, H. H., Catalano, P. and Koutrakis, P.: 2000, ‘Relative contribution of outdoor and indoor particle sources to indoor concentrations’, Environ. Sci. & Technol. 34, 3579–3587.

    Google Scholar 

  • Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N. and Frohliger, J. O.: 1979, ‘Indoor-outdoor relationships for airborne particulate matter of outdoor origin’, Atmos. Environ. 13, 55–60.

    Article  Google Scholar 

  • Byrne, M. A., Goddard, A. J. H., Lange, C. and Roed, J.: 1995, ‘Stable tracer aerosol deposition measurements in a test chamber’, J. Aerosol Sci. 26, 645–653.

    Article  Google Scholar 

  • Corner, J. and Pendlebury, E. D.: 1951, ‘The coagulation and deposition of a stirred aerosol’, Proc. Phys. Soc. B64, 645–654.

    Google Scholar 

  • Crump, J. G. and Seinfeld, J. H.: 1981, ‘Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape’, J. Aerosol Sci. 12, 405–451.

    Article  Google Scholar 

  • Dockery, D. W. and Spengler, J. D.: 1981, ‘Indoor-outdoor relationships of respirable sulfates and particles’, Atmos. Environ. 15, 335–343.

    Article  Google Scholar 

  • EPA: 1996a, Air quality criteria for particulate matter. Technical Report, EPA/600/P-95/001aF.

  • EPA: 1996b, Exposure factors handbook. Technical Report, EPA/600/P-95/002Ba.

  • Etheridge, D. W. and Sandberg, M.: 1996, Building Ventilation: Theory and Measurement, J. Wiley & Sons, Inc., New York, pp. 17–30.

    Google Scholar 

  • Fogh, C. L., Byrne, M. A., Roed, J. and Goddard, A. J. H.: 1997, ‘Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios’, Atmos. Environ. 31, 2193–2203.

    Article  Google Scholar 

  • Jones, N. C., Thornton, C. A., Mark, D. and Harrison, R. M.: 2000, ‘Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations’, Atmos. Environ. 34, 2603–2612.

    Article  Google Scholar 

  • Koponen, I. K., Asmi, A., Keronen, P., Puhto, K. and Kulmala, M.: 2001, ‘Indoor air measurement campaign in Helsinki, Finland 1999 — the effect of outdoor air pollution on indoor air’, Atmos. Environ. 35, 1465–1477.

    Article  Google Scholar 

  • Koutrakis, P., Briggs, S. L. K. and Leaderer, B. P.: 1992, ‘Source apportionment of indoor aerosols in Suffolk and Onondaga Counties New York’, Environ. Sci. & Technol. 26, 521–527.

    Google Scholar 

  • Lai, A. C. K. and Nazaroff, W. W.: 2000, ‘Modeling indoor particle deposition from turbulent flow onto smooth surfaces’, J. Aerosol Sci. 31, 463–476.

    Article  Google Scholar 

  • Long, C. M., Suh, H. H., Catalano, P. J. and Koutrakis, P.: 2001, ‘Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior‘, Environ. Sci. & Technol. 35, 2089–2099.

    Google Scholar 

  • McMurry, P. H. and Rader, D. J.: 1985, ‘Aerosol wall losses in electrically charged chambers’, Aerosol Sci. & Technol. 4, 249–268.

    Google Scholar 

  • Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guo, Z., Tucker, W. G., Fortmann, R. and Whitfiled, C.: 2001, ‘Penetration of ambient fine particles into the indoor environment’, Aerosol Sci. & Technol. 34, 127–136.

    Google Scholar 

  • Nazaroff, W. W. and Cass, G. R.: 1989, ‘Mathematical modeling of indoor aerosol dynamics’, Environ. Sci. & Technol. 23, 157–166.

    Google Scholar 

  • Offermann, F. J., Sextro, R. G., Fisk, W. J., Grimsrud, D. T., Nazaroff, W. W., Nero, A. V., Revzan, K. L. and Yater, J.: 1985, ‘Control of respirable particles in indoor air with portable air cleaners’, Atmos. Environ. 19, 1761–1771.

    Article  Google Scholar 

  • Pope, C. A., Thun, M. J., Namboorodi, M. M., Dockery, D. W., Evans, J. S., Speizer, F. E. and Heath, Jr. D. W.: 1995, ‘Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults’, Am. J. Resp. Crit. Care Med. 151, 669–674.

    PubMed  Google Scholar 

  • Raunemaa, T., Kulmala, M., Saari, H., Olin, M. and Kulmala, M. H.: 1989, ’Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles’, Aerosol Sci. & Technol. 11, 11–25.

    Google Scholar 

  • Riley, W. J., McKone, T. E., Lai, A. C. K. and Nazaroff, W. W.: 2002, ‘Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms’, Environ. Sci. & Technol. 36, 200–207.

    Google Scholar 

  • Schlesinger, R. B.: 1995, ‘Toxicological evidence for health effects from inhaled particulate pollution: Does it support the human experience?’, Inhalation Toxicology 7, 99–109.

    Google Scholar 

  • Schwartz, J.: 1994, ‘What are people dying of an air pollution days?’, Fundamental and Applied Toxicology 64, 26–35.

    Google Scholar 

  • Shimada, M., Okuyama, K. and Kousaka, Y.: 1989, ‘Influence of particle inertia on deposition in a stirred turbulent-flow field’, J. Aerosol Sci. 20, 419–429.

    Article  Google Scholar 

  • Thatcher, T. L. and Layton, D. W.: 1995, ‘Deposition, resuspension, and penetration of particles within a residence’, Atmos. Environ. 29, 1487–1497.

    Article  Google Scholar 

  • Vette, A. F., Rea, A. W., Lawless, P. A., Rodes, C. E., Evans, G., Highsmith, V. R. and Sheldon, L.: 2001, ‘Characterization of indoor-outdoor aerosol concentration relationships during the Fresno PM exposure studies’, Aerosol Sci. & Technol. 34, 118–126.

    Google Scholar 

  • Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G. and Nazaroff, W. W.: 2002, ‘Effects of room furnishings and air speed on particle deposition rates indoors’, Atmos. Environ. 36(11), 1811–1819.

    Article  Google Scholar 

  • Wallace, L. A., Emmerich, S. J. and Howard-Reed, C.: 2004, ‘Source strenghts of ultrafine and fine particles due to cooking with a gas stove’, Environ. Sci. & Technol. 38, 2304–2311.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Smolík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolík, J., Lazaridis, M., Moravec, P. et al. Indoor Aerosol Particle Deposition in an Empty Office. Water Air Soil Pollut 165, 301–312 (2005). https://doi.org/10.1007/s11270-005-7146-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-005-7146-6

Keywords

Navigation