Skip to main content

Advertisement

Log in

Uncertainty of the Agricultural Grey Water Footprint Based on High Resolution Primary Data

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

The water footprint has been established as an indicator to assess water use by a product. However, the grey component of the water footprint (GWF) has received the least focus compared to the green and blue components. In developing countries, the GWF estimation is restricted by the availability of data concerning crop practices. The various biophysical and socioeconomic settings configure a system difficult to standardize even for small areas. The objective of this study was to assess the GWF uncertainty due to primary data for the main greenhouse tomato production from Colombia. The GWF for N and P fertilizers and pesticides were estimated based on detailed crop information collected from 2010 to 2013. The uncertainty was evaluated by fitting univariate theoretical distributions to the empirical distributions of the pollutants’ GWFs. Growers applied on average 419.2 and 201.9 kg ha−1 of N and P fertilizers per cycle, respectively. The average rates of application for fungicides and insecticides were 11.8 and 3.5 kg ha−1, respectively. The average GWF for N and P fertilizers and pesticides were 79, 6182.1 and 223.2 m3 t−1, respectively. The empirical distributions of the GWF for N fertilizer and pesticides were fitted to a lognormal distribution while for P fertilizer the Weibull distribution showed the best fit. The pesticides GWF showed the highest coefficient of variation (615.3%), however the results for N and P fertilizers were also high with values of 79.8 and 74.1%, respectively. Additional to the methodological choices involved in the GWF estimation, the primary data is a relevant uncertainty source, which should be considered for systems operating under unstandardized practices. The decision making process to regulate the pollutants losses from the agroecosystem, based on environmental assessments such as the GWF, should consider all sources of uncertainty and address its implications in a quantitatively form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike HA (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  • Bocchiola D, Nana E, Soncini A (2013) Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agric Water Manag 116:50–61. doi:10.1016/j.agwat.2012.10.009

    Article  Google Scholar 

  • Bojacá CR, Arias LA, Ahumada DA, Casilimas HA, Schrevens E (2013) Evaluation of pesticide residues in open field and greenhouse tomatoes from Colombia. Food Control 30(2):400–403. doi:10.1016/j.foodcont.2012.08.015

    Article  Google Scholar 

  • Bojacá CR, Wyckhuys KAG, Schrevens E (2014) Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J Clean Prod 69:26–33. doi:10.1016/j.jclepro.2014.01.078

    Article  Google Scholar 

  • Cazcarro I, Duarte R, Sánchez-Chóliz J (2016) Downscaling the grey water footprints of production and consumption. J Clean Prod 132:171–183. doi:10.1016/j.jclepro.2015.07.113

    Article  Google Scholar 

  • CCME (2004) Canadian water quality guidelines for the protection of aquatic life – phosphorus: Canadian guidance framework for the management of freshwater systems. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Chapagain AK, Hoekstra AY (2011) The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol Econ 70(4):749–758. doi:10.1016/j.ecolecon.2010.11.012

    Article  Google Scholar 

  • Chapagain AK, Orr S (2009) An improved water footprint methodology linking global consumption to local water resources: a case of Spanish tomatoes. J Environ Manag 90(2):1219–1228. doi:10.1016/j.jenvman.2008.06.006

    Article  Google Scholar 

  • Chapman D (ed) (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring. Chapman & Hall, Cambridge

    Google Scholar 

  • Chouchane H, Hoekstra AY, Krol MS, Mekonnen MM (2015) The water footprint of Tunisia from an economic perspective. Ecol Indic 52:311–319. doi:10.1016/j.ecolind.2014.12.015

    Article  Google Scholar 

  • Conover WJ (1971) Practical nonparametric statistics. John Wiley & Sons, New York

    Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27(2):261–266. doi:10.2134/jeq1998.00472425002700020004x

    Article  Google Scholar 

  • De Fraiture C, Wichelns D (2010) Satisfying future demands for agriculture. Agric Water Manag 97(4):502–511. doi:10.1016/j.agwat.2009.08.008

    Article  Google Scholar 

  • Duarte R, Pinilla V, Serrano A (2014) The water footprint of the Spanish agricultural sector: 1860-2010. Ecol Econ 108:200–207. doi:10.1016/j.ecolecon.2014.10.020

    Article  Google Scholar 

  • Franke NA, Boyacioglu H, Hoekstra AY (2013) Grey water footprint accounting: tier 1 supporting guidelines. Value of water research report series no. 65. UNESCO-IHE, delft

  • Fulton J, Cooley H, Gleick PH (2014) Water footprint outcomes and policy relevance change with scale considered: evidence from California. Water Resour Manag 28:3637–3649. doi:10.1007/s11269-014-0692-1

    Article  Google Scholar 

  • Guerrero AM, Torres A (2016) Estimación de la oferta y demanda hídrica como base para la planificación de su uso en la producción de tomate en sistemas bajo invernadero y a campo abierto. MSc thesis in Environmental Sciences. Universidad Jorge Tadeo Lozano, Bogota

    Google Scholar 

  • Hejazi M, Edmonds J, Clarke L, Kyle P, Davies E, Chaturvedi V, Wise M, Patel P, Eom J, Calvin K, Moss R, Kim S (2014) Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol Forecast Soc Chang 81:205–226. doi:10.1016/j.techfore.2013.05.006

    Article  Google Scholar 

  • Herath I, Green S, Singh R, Horne D, van der Zijpp S, Clothier B (2013) Water footprinting of agricultural products: a hydrological assessment for the water footprint of New Zealand’s wines. J Clean Prod 41:232–243. doi:10.1016/j.jclepro.2012.10.024

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2009) Water footprint manual: state of the art 2009. Water Footprint Network, Enschede

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Earthscan Ltd, London

    Google Scholar 

  • Jeswani HK, Azapagic A (2011) Water footprint: methodologies and a case study for assessing the impacts of water use. J Clean Prod 19(12):1288–1299. doi:10.1016/j.jclepro.2011.04.003

    Article  Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions. Wiley, New York

    Google Scholar 

  • Laspidou CS (2014) Grey water footprint of crops and crop-derived products: analysis of calculation method. 4th international conference on environmental management, engineering, planning and economics (CEMEPE), Mykonos, pp 2899–2903

  • Mekonnen MM, Hoekstra Y (2011) The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci 15:1577–1600. doi:10.5194/hess-15-1577-2011

    Article  Google Scholar 

  • Ministerio de Ambiente, Vivienda y Desarrollo Territorial (2015) Resolución Número 631: Establecimiento de los parámetros y valores máximos permisibles en los vertimientos puntuales a cuerpos de agua superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá

    Google Scholar 

  • Pellicer-Martínez F, Martínez-Paz JM (2016) Grey water footprint assessment at the river basin level: accounting method and case study in the Segura River basin, Spain. Ecol Indic 60:1173–1183. doi:10.1016/j.ecolind.2015.08.032

    Article  Google Scholar 

  • Predotova M, Bischoff W, Buerkert A (2010) Mineral-nitrogen and phosphorus leaching from vegetable gardens in Niamey, Niger. J Plant Nutr Soil Sci 174(1):47–55. doi:10.1002/jpln.200900255

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Available from: www.R-project.org

    Google Scholar 

  • Riwthong S, Schreinemachers P, Grovermann C, Berger T (2015) Land use intensification, commercialization and changes in pest management of smallholder upland agriculture in Thailand. Environ Sci Pol 45:11–19. doi:10.1016/j.envsci.2014.09.003

    Article  Google Scholar 

  • Rust R, Simester D, Brodie RJ, Nilikant V (1995) Model selection criteria: an investigation of relative accuracy, posterior probabilities, and combinations of criteria. Manag Sci 41(2):322–333

    Article  Google Scholar 

  • Schiesari L, Waichman A, Brock T, Adams C, Grillitsch B (2013) Pesticide use and biodiversity conservation in the Amazonian agricultural frontier. Philos Trans R Soc Lond B Biol Sci 368:20120378. doi:10.1098/rstb.2012.0378

    Article  Google Scholar 

  • Stadlinger N, Mmochi AJ, Dobo S, Gyllbäck E, Kumblad L (2011) Pesticide use among smallholder rice farmers in Tanzania. Environ Dev Sustain 13:641–656. doi:10.1007/s10668-010-9281-5

    Article  Google Scholar 

  • Sun SK, Wu PT, Wang YB, Zhao XN (2013) Temporal variability of water footprint for maize production: the case of Beijing from 1978 to 2008. Water Resour Manag 27:2447–2463. doi:10.1007/s11269-013-0296-1

    Article  Google Scholar 

  • Wang E, Shen Z (2013) A hybrid data quality indicator and statistical method for improving uncertainty analysis in LCA of complex system – application to the whole-building embodied energy analysis. J Clean Prod 43:166–173. doi:10.1016/j.jclepro.2012.12.010

    Article  Google Scholar 

  • Wang Z, Huang K, Yang S, Yu Y (2013) An input-output approach to evaluate the water footprint and virtual water trade of Beijing, China. J Clean Prod 42:172–179. doi:10.1016/j.jclepro.2012.11.007

    Article  Google Scholar 

  • Zhuo L, Mekonnen M, Hoekstra A (2014) Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin. Hydrol Earth Syst Sci 18:2219–2234. doi:10.5194/hess-18-2219-2014

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the VLIR-UOS (Flemish Interuniversity Council) project “Multidisciplinary assessment of efficiency and sustainability of smallholder-based tomato production systems in Colombia, with a roadmap for change” (ZEIN2009PR364) and by the Colciencias project “Desarrollo de un prototipo de sistema de soporte a la decisión para el manejo del agua y la nutrición del tomate a campo abierto y bajo invernadero” - Code: 1202-669-45624.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ricardo Bojacá.

Electronic supplementary material

Online Resource 1

(PDF 84 kb)

Online Resource 2

(PDF 46 kb)

Online Resource 3

(PDF 727 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil, R., Bojacá, C.R. & Schrevens, E. Uncertainty of the Agricultural Grey Water Footprint Based on High Resolution Primary Data. Water Resour Manage 31, 3389–3400 (2017). https://doi.org/10.1007/s11269-017-1674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-017-1674-x

Keywords

Navigation