Skip to main content
Log in

Modeling of Drinking Water Distribution Networks Using Stochastic Demand

  • Published:
Water Resources Management Aims and scope Submit manuscript

Abstract

Residential water demand is one of the most difficult parameters to determine when modeling drinking water distribution networks. It has been proven to be a stochastic process that can be characterized as a series of rectangular pulses with a set intensity, duration and frequency. These parameters can be determined using stochastic models such as the Neyman-Scott Rectangular Pulse (NSRP) model. The NSRP model is based on the solution of a non-linear optimization problem. This solution involves theoretical moments that represent the synthetic demand series (equiprobable) and the observed moments (field measurements) that statistically establish the measured demand series. The NSRP model has been applied for residential demand, and the results have been published. However, this model has not been validated for a real distribution network or compared with traditional methods. The present study compared the results of synthetic stochastic demand series, which were calculated using the NSRP model, applied to the determination of pressures, flow rates and leaks; to the results obtained using traditional simulation methods, which use the curve of hourly variation in demand, and to actual pressure and flow rate measurements. The Humaya sector of Culiacan, Sinaloa, Mexico, was used as the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcocer-Yamanaka V (2007) Flujo estocástico y transporte en redes de distribución de agua potable, PhD Thesis, Universidad Nacional Autónoma de México, p 240 (in Spanish)

  • Alcocer-Yamanaka V, Tzatchkov V (2002) Implementación y Calibración de un modelo de calidad del agua en sistemas de agua potable. Instituto Mexicano de Tecnología del Agua–Comisión Nacional del Agua. Research project report (in Spanish)

  • Alcocer-Yamanaka V, Tzatchkov V (2003) Modelo de transporte de sustancias en flujo no permanente en redes de agua potable. Instituto Mexicano de Tecnología del Agua–Comisión Nacional del Agua. Research project report (in Spanish).

  • Alcocer-Yamanaka, V, Tzatchkov, V. (2004) Estudio de la variación estocástica de la demanda en redes de agua potable. Instituto Mexicano de Tecnología del Agua. Research project report (in Spanish).

  • Alcocer-Yamanaka V, Tzatchkov V, Arreguín CF (2004) Modelo de calidad del agua en redes de distribución. Ing. Hidraul. en México. volume XIX, num. 2. April–June 2004 (in Spanish)

  • Alcocer-Yamanaka V, Tzatchkov V, García R, Buchberger S, Arreguín F, León T (2008a) Modelación estocástica del consumo doméstico empleando el esquema de Neyman-Scott. Ing. Hidraul. en México, volume XXIII, num. 3, July–Sept 2008, pp. 105–121 (in Spanish)

  • Alcocer-Yamanaka V, Tzatchkov V, Bourguett V (2008b) Desagregación temporal de lecturas acumuladas de consumo de agua potable por medio de métodos estocásticos. Intersci (Venezuela) 33(10):725–732 (in Spanish)

    Google Scholar 

  • Alcocer-Yamanaka V, Aldama A, Tzatchkov V, Espinosa A, Arreguín F (2009a) Análisis espectral de registros de consumo doméstico. Ing. Hidraul. en México, volume XXIV, num. 4, Oct–Dec 2009 (in Spanish)

  • Alcocer-Yamanaka V, Tzatchkov V, Zheng W (2009b) Spectral analysis of instantaneous residential water demand series, Integrating Water Systems - Computing and Control in the Water Industry (CCWI), CRCPress/A.A. Balkema Publishers – Taylor & Francis Group, Joby Boxall and Cêdo Maksimović - Editors 2009, Sheffield, UK. pp 503–508

  • Alvisi S, Franchini M, Marinelli A (2003) A stochastic model for representing drinking water demand at residential level. Water Resour Manag 17(3):197–222

    Article  Google Scholar 

  • Bazaraa M, Sherali H, Shetty CM (1993) Nonlinear programming: theory and algorithms. Wiley

  • Buchberger S, Wu L (1995) A model for instantaneous residential water demands. J Hydraul Eng ASCE 121(3):232–246

    Article  Google Scholar 

  • Buchberger SG, Carter JT, Lee Y, Schade TG (2003a) Random demands, travel times, and water quality in deadends. AWWA Research Foundation, 2003

  • Buchberger SG, Li Z, Tzatchkov VG (2003b) Hydraulic behavior of pipe networks subject to random water demands, World Water & Environmental Resources Congress 2003, Philadelphia, PA, June 23 to 26, 2003

  • Buchberger SG, Li Z, Tzatchkov VG (2003c) Hydraulic characterization of pipe network subject to stochastic water demands, Water Resources Management. II, Editor: C.A. Brebbia, WIT Press, Southampton, Boston, 2003, pp 161–170

  • Entekhabi D, Bras R (1990) Parameter estimation and sensitivity analysis for the modified Barlett-Lewis rectangular pulses model of rainfall. J Geophys Res 95(D3):2093–2100

    Google Scholar 

  • Entekhabi D, Rodríguez-Iturbe I, Eagleson P (1989) Probabilistic representation of the temporal rainfall process by a modified Neyman-Scott rectangular pulses model: parameter estimation and validation. Water Resour Res 25(2):295–302

    Article  Google Scholar 

  • Feliciano D (2005) Análisis y caracterización estocástica del consumo de agua potable en viviendas de Culiacán, Sinaloa, MSc Thesis, UNAM (in Spanish)

  • Guercio R, Magini R, Pallavicini I (2001) Instantaneous residencial water demand as stochastic point process. Water Resources Management. Brebbia et al. (Eds) WIT Press, pp 129–138

  • Kiya F, Murakawa S (1989) Design load for water supply in buildings. Tokyo, A.A. Balkema/Rotterdam

    Google Scholar 

  • Mellor D (2007) Generalized Neyman-Scott model, Version 3.3.1 beta. GNU (General Public License), Copyright 1989, 1991 Free Software Foundation Inc, Cambridge, MA, USA

  • Nadimpalli G, Buchberger S (2003) Estimation of parameters for Poisson pulse model of residential water demands. Technical report, Deparment of Civil and Environmental Engineering, University of Cincinnati, p 43.

  • Rodriguez-Iturbe I, Gupta V, Waymire E (1984) Scale considerations in the modeling of temporal rainfall. Water Resour Res 20(11):1611–1619

    Article  Google Scholar 

  • Rodriguez-Iturbe I, Cox D, EIsham V (1987) Some models for rainfall based on stochastic point process. Proc R Soc London A 410:269–288

    Google Scholar 

  • Tzatchkov V (2007) Datos Básicos. Manual de diseño de agua potable, alcantarillado y saneamiento, Subdirección General e Infraestructura Hidráulica Urbana e Industrial-Gerencia de Normas Técnicas-Comisión Nacional del Agua- Instituto Mexicano de Tecnología del Agua, Third Edition, p 89 (in Spanish)

  • Tzatchkov V, Alcocer-Yamanaka YV, Arreguín CF (2004) Decaimiento del cloro por reacción con el agua en redes de distribución. Ing. Hidraul. en México volume XIX, num. 1. Jan–March 2004 (in Spanish)

  • Tzatchkov V, Alcocer-Yamanaka V, Arreguín CF, Feliciano G (2005) Medición y caracterización estocástica de la demanda instantánea de agua potable. Ing. Hidraul. en México, Vol. XX, No.1, Jan–March 2005 (in Spanish)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velitchko G. Tzatchkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcocer-Yamanaka, V.H., Tzatchkov, V.G. & Arreguin-Cortes, F.I. Modeling of Drinking Water Distribution Networks Using Stochastic Demand. Water Resour Manage 26, 1779–1792 (2012). https://doi.org/10.1007/s11269-012-9979-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-012-9979-2

Keywords

Navigation