Skip to main content
Log in

Direction-of-Arrival Estimation Methods: A Performance-Complexity Tradeoff Perspective

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This work analyses the performance-complexity tradeoff for different direction of arrival (DoA) estimation techniques. Such tradeoff is investigated taking into account uniform linear array structures. Several DoA estimation techniques have been compared, namely the conventional Delay-and-Sum (DS), Minimum Variance Distortionless Response (MVDR), Multiple Signal Classifier (MUSIC) subspace, Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT), Unitary-ESPRIT and Fourier Transform method (FT-DoA). The analytical formulation of each estimation technique as well the comparative numerical results are discussed focused on the estimation accuracy versus complexity tradeoff. The present study reveals the behavior of seven techniques, demonstrating promising ones for current and future location applications involving DoA estimation, especially for 5G massivemimo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Godara, L.C. (2004). Smart Antennas, 1st edn. Boca Raton: CRC Press.

    Book  Google Scholar 

  2. Monzingo, R.A., Haupt, R.L., Miller, T.W. (2011). Introduction to Adaptive Arrays. Raleigh: Scitech.

    Book  Google Scholar 

  3. Fourtz, J., Spanias, A., Banavar, M.K. (2008). Narrowband Direction of Arrival Estimation for Antenna Arrays, 1st edn. Arizona: Morgan & Claypool.

    Google Scholar 

  4. Capon, J. (1969). High-Resolution Frequency-Wavenumber spectrum analysis. Proceedings of the IEEE, 57 (8), 1408–1418.

    Article  Google Scholar 

  5. Reddy, V.U., Paulraj, A., Kailath, T. (1987). Performance Analysis of The Optimum Beamformer in The Presence of Correlated Sources and Its Behavior Under Spatial Smoothing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 35(7), 927–936.

    Article  Google Scholar 

  6. Schmidt, R.O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  7. Godara, L.C. (1997). Application of antenna arrays to mobile communications, part II: Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  8. Haykin, S. (1996). Adaptative Filter Theory, 3rd edn. New York: Prentice Hall.

    Google Scholar 

  9. Liberti, J.C., & Rappaport, T.S. (1999). Smart Antennas for Wireless Communications - IS-95 and Third Generation CDMA Applications, 1st edn. Upper Saddle River: Prentice Hall.

    Google Scholar 

  10. Gross, F.B. (2015). Smart Antenna with MATLAB, 2nd edn. New York: NY.

    Google Scholar 

  11. Barabell, A.J. (1983). Improving the resolution performance of eigenstructure-based direction-finding algorithms. ICASSP ’83. IEEE International Conference on Acoustics, Speech, and Signal Processing, 8, 8–11.

    Google Scholar 

  12. Roy, R., & Kailath, T. (1989). ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech, and Signal Processing, 37(7), 984–995.

    Article  Google Scholar 

  13. Haardt, M. (1997). Efficient One-, Two-, and Multidimensional High-Resolution Array Signal Processing, 1st edn. Munich: Shaker Verlag.

    Google Scholar 

  14. Balanis, C.A., & Ioannides, P.I. (2007). Introduction to Smart Antennas, 1st edn. Arizona: Morgan & Claypool.

    Google Scholar 

  15. Allen, B., & Ghavami, M. (2005). Adaptive array systems: Fundamentals and applications. West Sussex: Wiley.

    Google Scholar 

  16. Liang, J., & Liu, D. (2010). Passive Localization of Mixed Near-Field and Far-Field Sources Using Two-stage MUSIC Algorithm. IEEE Transactions on Signal Processing, 58(1), 108–120.

    Article  MathSciNet  Google Scholar 

  17. Liu, G., & Sun, X. (2014). Two-Stage matrix differencing algorithm for mixed Far-Field and Near-Field sources classification and localization. IEEE Sensors Journal, 14(6), 1957–1965.

    Article  Google Scholar 

  18. Pal, P., & Vaidyanathan, P.P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167–4181.

    Article  MathSciNet  Google Scholar 

  19. Zhang, Y.D., Qin, S., Amin, M.G. (2014). Doa estimation exploiting coprime arrays with sparse sensor spacing. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. Number 1 (pp. 2267–2271). Florence: IEEE.

  20. Li, J., & Zhang, X. (2017). Direction of arrival estimation of quasi-stationary signals using unfolded coprime array. IEEE Access, 5, 1–1.

    Article  Google Scholar 

  21. Mailloux, R.J. (2005). Phased Array Antenna Handbook, 2nd edn. Vol. 1. Artech House: Norwood.

    Google Scholar 

  22. Yang, X., Liu, L., Wang, Y. (2016). A new low complexity DOA estimation algorithm for massive MIMO systems. In 2016 IEEE international conference on consumer electronics-china (ICCE-china) (pp. 1–4). Guangzhou: IEEE.

  23. Meng, H., Zheng, Z., Yang, Y., Liu, K., Ge, Y. (2016). A low-complexity 2-d DOA estimation algorithm for massive MIMO systems. In 2016 IEEE/CIC international conference on communications in China (ICCC) (pp. 1–5). Chengdu: IEEE.

  24. Ferreira, T.N., Netto, S.L., de Campos, M.L., Diniz, P.S. (2016). Low-complexity DoA estimation based on Hermitian EVDs. Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop (pp. 1–5).

  25. Zhang, K., Ma, P., Zhang, J.Y. (2011). DOA estimation algorithm based on FFT in switch antenna array. Proceedings of 2011 IEEE CIE International Conference on Radar, 2(4), 1425–1428.

    Article  Google Scholar 

  26. Trench, W.F. (1989). Numerical Solution of the eigenvalue problem for hermitian toeplitz matrices. SIAM Journal Matrix Analisys Applications, 10(2), 135–146.

    Article  MathSciNet  Google Scholar 

  27. Hunger, R. (2007). Floating point operations in Matrix-Vector calculus. Technical report, Munich.

  28. Cybenko, G. (1980). The numerical stability of the Levinson-Durbin algorithm for toeplitz systems of equations. SIAM Journal on Scientific Computing, 1(3), 303–319.

    Article  MathSciNet  Google Scholar 

  29. Haardt, M., Pesavento, M., Roemer, F., Nabil el korso, M. (2014). Subspace Methods and Exploitation of Special Array Structures. In Academic Press Library in Signal Processing: volume 3; Array and Statistical Signal Processing. 3rd edn. (pp. 651–717). Oxford: Academic Press.

    Chapter  Google Scholar 

  30. Amdahl, G.M. (1967). Validity of the single processor approach to achieving large scale computing capabilities. Proceedings of the April 18-20, 1967, spring joint computer conference on - AFIPS ’67 (Spring) 483.

  31. Culler, D., Singh, J.P., Gupta, A. (1997). Parallel computer architecture: a Hardware/Software approach Vol. 1. San Francisco: Morgan Kaufmann.

    Google Scholar 

  32. Golub, G.H., & Loan, C.F.V. (2013). Matrix Computations, 4th edn. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grants 304066/2015-0, and in part by CAPES - Coordenaçá3o de Aperfeiçoamento de Pessoal de Nível Superior, Brazil (scholarship), and by the Londrina State University - Paraná State Government (UEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edno Gentilho Jr..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentilho, E., Scalassara, P.R. & Abrão, T. Direction-of-Arrival Estimation Methods: A Performance-Complexity Tradeoff Perspective. J Sign Process Syst 92, 239–256 (2020). https://doi.org/10.1007/s11265-019-01467-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-019-01467-4

Keywords

Navigation