Skip to main content
Log in

Application of Linear Discriminant Analysis to Ultrasound Signals for Automatic Microstructural Characterization and Classification

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

During the gas tungsten arc welding of nickel based superalloys, the secondary phases such as Laves and carbides are formed in final stage of solidification. But, other phases such as γ^” and δ phases can precipitate in the microstructure, during aging at high temperatures. Nevertheless, choosing the appropriate conditions of welding can minimize the formation of the Nb-rich Laves phases and thus reduce the susceptibility to solidification cracking. This study proposed and evaluated the performance of an automated processing system to microstructurally characterizing the kinetics of phase transformations on a Nb-base alloy, thermally aged at 650 and 950 °C for 10, 100 and 200 h, using Linear Discriminant Analysis (LDA) on Background echo and Backscattered ultrasound signals at frequencies of 4 and 5 MHz. The main goal of this work is to design a more practical processing system in terms of the accuracy and the speed of processing. This system is composed of three methodologies: the first methodology uses LDA coefficients of normalized ultrasound signals, the second methodology uses LDA coefficients of error signals of the third-order linear prediction model of normalized ultrasound signals and the third methodology uses LDA coefficients of Discrete Cosine Transform. In all three methods, the Probabilistic Neural Network was used as a classifier. The highest accuracies were provided by the third methodology with average classification accuracies of 94.50 and 75.50 %, respectively for thermal aging at 650 and 950 °C. Indeed, LDA proved to be an efficient processing step for microstructural classification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Boser, O. (1979). The behavior of inconel 625 in a silver environment. Materials Science and Engineering, 41(1), 59–64.

    Article  Google Scholar 

  2. Kohl, H., & Peng, K. (1981). Thermal stability of the superalloys Inconel 625 and Nimonic 86. Journal of Nuclear Materials, 101(3), 243–250.

    Article  Google Scholar 

  3. Thomas, C., & Tait, P. (1994). The performance of Alloy 625 in long-term intermediate temperature applications. International Journal of Pressure Vessels and Piping, 59(1–3), 41–49.

    Article  Google Scholar 

  4. Cieslak, M. (1991). The welding and solidification metallurgy of alloy 625. Welding Journal, 70(2), 49–56.

    Google Scholar 

  5. Cieslak, M., Headley, T., & Romig, A. (1986). The welding metallurgy of HASTELLOY alloys C-4, C-22, and C-276. Metallurgical Transactions A, 17(11), 2035–2047.

    Article  Google Scholar 

  6. Yang, J., Zheng, Q., Sun, X., Guan, H., & Hu, Z. (2006). Formation of μ phase during thermal exposure and its effect on the properties of K465 superalloy. Scripta Materialia, 55(4), 331–334.

    Article  Google Scholar 

  7. Dupont, J., Banovic, S., & Marder, A. (2003). Microstructural evolution and weldability of dissimilar welds between a super austenitic stainless steel and nickel-based alloys. Welding Journal, 82(6), 125–156.

    Google Scholar 

  8. de Albuquerque, V., Filho, P., Cavalcante, T., & Tavares, J. (2010). New computational solution to quantify synthetic material porosity from optical microscopic images. Journal of Microscopy, 240(1), 50–59.

    Article  MathSciNet  Google Scholar 

  9. Albuquerque, V., Tavares, J., & Cortez, P. (2010). Quantification of the microstructures of hypoeutectic white cast iron using mathematical morphology and an artificial neural network. IJMMP, 5(1), 52.

    Article  Google Scholar 

  10. de Albuquerque, V., de Alexandria, A., Cortez, P., & Tavares, J. (2009). Evaluation of multilayer perceptron and self-organizing map neural network topologies applied on microstructure segmentation from metallographic images. NDT & E International, 42(7), 644–651.

    Article  Google Scholar 

  11. de Albuquerque, V., Cortez, P., de Alexandria, A., & Tavares, J. (2008). A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network. Nondestructive Testing and Evaluation, 23(4), 273–283.

    Article  Google Scholar 

  12. Papa, J., Nakamura, R., de Albuquerque, V., Falcão, A., & Tavares, J. (2013). Computer techniques towards the automatic characterization of graphite particles in metallographic images of industrial materials. Expert Systems with Applications, 40(2), 590–597.

    Article  Google Scholar 

  13. Nunes, T., de Albuquerque, V., Papa, J., Silva, C., Normando, P., Moura, E., & Tavares, J. (2013). Automatic microstructural characterization and classification using artificial intelligence techniques on ultrasound signals. Expert Systems with Applications, 40(8), 3096–3105.

    Article  Google Scholar 

  14. de Albuquerque, V., Silva, C., Normando, P., Moura, E., & Tavares, J. (2012). Thermal aging effects on the microstructure of Nb-bearing nickel based superalloy weld overlays using ultrasound techniques. Materials & Design, 36, 337–347.

    Article  Google Scholar 

  15. Shankar, V., Bhanu Sankara Rao, K., & Mannan, S. (2001). Microstructure and mechanical properties of Inconel 625 superalloy. Journal of Nuclear Materials, 288(2–3), 222–232.

    Article  Google Scholar 

  16. Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.

    MATH  Google Scholar 

  17. de Albuquerque, V., de Macedo Silva, E., Pereira Leite, J., de Moura, E., de Araújo Freitas, V., & Tavares, J. (2010). Spinodal decomposition mechanism study on the duplex stainless steel UNS S31803 using ultrasonic speed measurements. Materials & Design, 31(4), 2147–2150.

    Article  Google Scholar 

  18. Normando, P., Moura, E., Souza, J., Tavares, S., & Padovese, L. (2010). Ultrasound, eddy current and magnetic Barkhausen noise as tools for sigma phase detection on a UNS S31803 duplex stainless steel. Materials Science and Engineering A, 527(12), 2886–2891.

    Article  Google Scholar 

  19. de Macedo Silva, E., de Albuquerque, V., Leite, J., Varela, A., Moura, E., & Tavares, J. (2009). Phase transformations evaluation on a UNS S31803 duplex stainless steel based on nondestructive testing. Materials Science and Engineering A, 516(1–2), 126–130.

    Article  Google Scholar 

  20. Makhoul, J. (1975). Linear prediction: a tutorial review. Proceedings of IEEE, 63(4), 561–580.

    Article  Google Scholar 

  21. Ahmed, N., Natarajan, T., & Rao, K. (1974). Discrete cosine transform. IEEE Transactions on Computers, 23(1), 90–93.

    Article  MathSciNet  MATH  Google Scholar 

  22. Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. New York: Wiley.

    MATH  Google Scholar 

  23. Jaynes, E., & Bretthorst, G. (2003). Probability theory. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  24. Cox, D. (2006). Principles of statistical inference. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  25. Freedman, D. (2005). Statistical models. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  26. Devijver, P., & Kittler, J. (1982). Pattern recognition. Englewood Cliffs: Prentice/Hall International.

    MATH  Google Scholar 

Download references

Acknowledgments

The first author thanks from Victor Hugo C. de Albuquerque and is also grateful for his help for providing the experimental dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Vejdannik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vejdannik, M., Sadr, A. Application of Linear Discriminant Analysis to Ultrasound Signals for Automatic Microstructural Characterization and Classification. J Sign Process Syst 83, 411–421 (2016). https://doi.org/10.1007/s11265-015-1029-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1029-x

Keywords

Navigation