Skip to main content
Log in

Adaptive Search Window for High Efficiency Video Coding

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents an adaptive search window based on prediction error of neighboring blocks, first projection method proved to be less complex by statistical proof and then experimental results are conducted on various video sequence by correlating different frames. Threshold values for changing different search range are chosen from average SAD of designated region of block and finally by effectively switching from different search range, unwanted computation are eliminated. As local characteristics of the motion is utilized for selecting the search range, the proposed algorithm achieves several times faster than the exhaustive search with negligible performance degradation. For QCIF, CIF WQVGA, 720p and 1080p size videos the proposed method attains 54 % reduction of computational complexity, while maintaining video quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Joint Video Team of ITU-T and ISODEC JTC I (2003 March). Draft ITU-Trecommendation and final draft international standard of joint video specification. (ITU-T Rec. H.264 ISO/IEC 14496.10 AVC) JVT of ISO/IEC MPEG and ITU-T VCEG, JVT – GO05.

  2. Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP 3 and ISO DEC JTC I/SC29/WG11 (2011). HEVC Reference Software Manual. JCTVC-F634, 6th Meeting Torino, IT 12– 22 July.

  3. Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13(7), 560–576.

    Article  Google Scholar 

  4. Kuhn (1999). Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation, Kluwer publisher.

  5. Yap, S. Y., & McCanny, J. V. (2004). A VLSI architecture for variable block size video motion estimation. IEEE Transactions on Circuits and Systems II, 51, 384–389.

    Article  Google Scholar 

  6. Yu-Kun, L., Chia-Chun, L., Tzu-Yun, K., & Tian-sheuan, C. (2008). A hardware-efficient H.264/AVC motion estimation design for high-definition video. IEEE Transaction on Circuits and Systems I, 55, 1526–1535.

    Article  Google Scholar 

  7. Chung, K. L., & Chang, L. C. (2003). A new predictive search area approach for fast block motion estimation. IEEE Transactions on Image Processing, 12(6), 648–652.

    Article  Google Scholar 

  8. Milanfar, P. (1999). A model of the effect of image motion in the radon transform domain. IEEE Transaction on Image Processing, 8(9), 1276–1281.

    Article  Google Scholar 

  9. Kim, J., & Park, R. (1992). A fast feature-based block matching algorithm using integral projections. IEEE Journal on Selected Areas in Communication, 10(5), 968–971.

    Article  Google Scholar 

  10. Tu, C., Tran, T., & Topiwala, P. (2001 April). A hybrid feature/image block motion estimation approach. ITU-T/VCEG M.26.doc, Austin Meeting.

  11. Paul, A. (2013). High performance for adaptive deblocking filter in H.264/AVC system. IETE Technical Review, 30(2), 157–161.

    Google Scholar 

  12. Yamada, T., Ikekawa, M., & Kuroda, I. (2005). Fast and accurate motion estimation algorithm by adaptive search range and shape selection. Proceeding of ICASSP, 2, 897–900.

    Google Scholar 

  13. Joint Video Team of ISO/IEC 239 MPEG and ITU-T VCEG, H.264/AVC. (online) Reference Software 240 JM10.1, http://bs.hhi.de/suehring/tml/download/

  14. Bjontegarrd, G. (2001). Calculation of Average PSNR Difference between RD-curve. VCEG-M33.doc, In: 13th VCEG Meeting, Austin, TX.

  15. Zhu, C., Lin, X., & Chau, L.-P. (2002). Hexagonal-based search pattern for fast block motion estimation. IEEE Transaction on Circuits and Systems for Video Technology, 12(15), 349–355.

    Article  Google Scholar 

  16. Kim, B.-G., Reddy, K., & AhnW. H. (2009). Dynamic Search-range control algorithm for fast interframe coding in scalable video coding. Optical Engineering, 48(9), 1–14, 097002.

  17. Paul, A., Jiang, Y. C., Wang J. F., Yang J. F. (2012). Parallel reconfigurable computing based mapping algorithm for motion estimation in advanced video coding. ACM Transactions Embedded Computing Systems, 11(2), Article No: 40, August 2012.

  18. Paul, A. (2013). Dynamic power management for ubiquitous network devices. Advance Science Letters, 19(7), 2046–2049.

    Article  Google Scholar 

  19. Shih, P., Paul, A., Wang, J.-F., & Chen, Y. H. (2013). Speech Driven Talking Face Using Embedded Confusable Systems for Real Time Mobile Multimedia. Multimedia Tools and Applications, August 2013.

  20. Andersson, K., Sjoberg, R., & Norkin, A. (2009). Joint VideoTeam of ITU-T Reliability metric for BD measurement. (MPEG and ITU-T/ VCEG, AL22.doc).

  21. Wu, J., Paul, A., Xing, Y., Fang, Y., Jeong, J., Jiao, L., & Shi, G. (2010). Morphological Dilation image coding with context weight prediction. Signal Processing and Image Communication, 25(10), 717–728.

    Article  Google Scholar 

  22. Tsia, A. C., Paul A., Wang J. C., Wang, J. F. (2007). “Efficient Intra Prediction in H.264 based on Intensity Gradient Approach”. IEEE International Symposium on Circuits and Systems ISCAS. 3952–3955.

  23. Paul, A.,Wang, J., Yang, J., (2008). Adaptive Search Range Selection for Scalable Video Coding extension for H.264/AVC, p 1–4. IEEE Region 10, TENCON 2008.

  24. Wang, J. F, Wang, J. C.,Chen, J. T.,Tsai, A. C., Paul A. (2006). A Novel fast Algorithm for inter mode decision in H.264/AVC Encoder, p 3498–3501. IEEE International Symposium on Circuits and Systmes ISCAS.

  25. Anand, P., Jhing-Fa, W., Jia-Ching, W., An-Chao, T., & Jang-Ting, C. (2006). Projection based adpative window size selection for efficient motion estimation in H.264/AVC. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Science, 89(11), 2970–2976.

    Google Scholar 

  26. Tsai, A. C., Paul, A., Wang, J. C., Wang, J. F. (2006). Programmable Logic Array Design for H.264 Context based adaptive variable length Coding, p 1–4. IEEE Region 10, TENCON 2006.

  27. Paul, A., Aruldoss Albert Vivtoire, T., Jeyakumar, A. E. (2003). Particle Swarm approach for retiming in VLSI, 3, 1532–1535. IEEE 46th Mid-West Symposium on Circuits and Systems MWSCAS 2003, Cairo, Egypt.

  28. Paul, A., Jiang, Y. C., & Wang, J. F. (2010). Computation aware scheme for visual Signal Processing. Journal of Software, 5(6), 573–578.

    Article  Google Scholar 

  29. Paul, A., Wu, J., Yang, J.-F., Jeong, J. (2011). Gradient-based edge detection for motion estimation in H.264/AVC, p 323–327. IET Image Processing.

Download references

Acknowledgments

This research work was supported by the Kyungpook National University Research Fund, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Paul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, A. Adaptive Search Window for High Efficiency Video Coding. J Sign Process Syst 79, 257–262 (2015). https://doi.org/10.1007/s11265-013-0841-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0841-4

Keywords

Navigation