Skip to main content

Advertisement

Log in

Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper we propose a deep learning solution to age estimation from a single face image without the use of facial landmarks and introduce the IMDB-WIKI dataset, the largest public dataset of face images with age and gender labels. If the real age estimation research spans over decades, the study of apparent age estimation or the age as perceived by other humans from a face image is a recent endeavor. We tackle both tasks with our convolutional neural networks (CNNs) of VGG-16 architecture which are pre-trained on ImageNet for image classification. We pose the age estimation problem as a deep classification problem followed by a softmax expected value refinement. The key factors of our solution are: deep learned models from large data, robust face alignment, and expected value formulation for age regression. We validate our methods on standard benchmarks and achieve state-of-the-art results for both real and apparent age estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. www.imdb.com.

  2. https://en.wikipedia.org/.

References

  • Chang, K.Y., Chen, C.S., & Hung, Y.P. (2011). Ordinal hyperplanes ranker with cost sensitivities for age estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Chen, B. C., Chen, C. S., & Hsu, W. H. (2015). Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Transactions on Multimedia, 17(6), 804–815.

    Article  Google Scholar 

  • Chen, J.C., Patel, V.M., & Chellappa, R. (2016). Unconstrained face verification using deep CNN features. IEEE Winter Conference on Applications of Computer Vision (WACV)

  • Chen, K., Gong, S., Xiang, T., & Change Loy, C. (2013). Cumulative attribute space for age and crowd density estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 23(6), 681–685.

    Article  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.

    MATH  Google Scholar 

  • Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J., & Vapnik, V. (1997). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.

    Google Scholar 

  • Eidinger, E., Enbar, R., & Hassner, T. (2014). Age and gender estimation of unfiltered faces. IEEE Transactions on Information Forensics and Security, 9(12), 2170–2179.

    Article  Google Scholar 

  • Escalera, S., Fabian, J., Pardo, P., Baro, X., Gonzalez, J., Escalante, H.J., Misevic, D., Steiner, U., & Guyon, I. (2015). Chalearn looking at people 2015: apparent age and cultural event recognition datasets and results. IEEE International Conference on Computer Vision (ICCV) Workshops

  • Farkas, L. G., & Schendel, S. A. (1995). Anthropometry of the head and face. American Journal of Orthodontics and Dentofacial Orthopedics, 107(1), 112–112.

    Google Scholar 

  • Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32(9), 1627–1645.

    Article  Google Scholar 

  • Fu, Y., & Huang, T. S. (2008). Human age estimation with regression on discriminative aging manifold. IEEE Transactions on Multimedia, 10(4), 578–584.

    Article  Google Scholar 

  • Fu, Y., Guo, G., & Huang, T. S. (2010). Age synthesis and estimation via faces: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32(11), 1955–1976.

    Article  Google Scholar 

  • Fukai, H., Takimoto, H., Mitsukura, Y., & Fukumi, M. (2007). Apparent age estimation system based on age perception. SICE Annual Conference

  • Gao, F., & Ai, H. (2009). Face age classification on consumer images with gabor feature and fuzzy lda method. International Conference on Biometrics (ICB), pp 132–141

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  Google Scholar 

  • Geng, X., Zhou, Z. H., & Smith-Miles, K. (2007). Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29(12), 2234–2240.

    Article  Google Scholar 

  • Girshick, R.B., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Guo, G. (2012). Human age estimation and sex classification. Video Analytics for Business Intelligence, pp 101–131

  • Guo, G., & Mu, G. (2011). Simultaneous dimensionality reduction and human age estimation via kernel partial least squares regression. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Guo, G., & Mu, G. (2014). A framework for joint estimation of age, gender and ethnicity on a large database. Image and Vision Computing, 32(10), 761–770.

    Article  Google Scholar 

  • Guo, G., Fu, Y., Dyer, C. R., & Huang, T. S. (2008). Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Transactions on Image Processing, 17(7), 1178–1188.

    Article  MathSciNet  Google Scholar 

  • Guo, G., Mu, G., Fu, Y., & Huang, T. (2009). Human age estimation using bio-inspired features. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Han, H., Otto, C., & Jain, A.K. (2013). Age estimation from face images: Human vs. machine performance. International Conference on Biometrics (ICB)

  • Han, H., Otto, C., Liu, X., & Jain, A.K. (2015). Demographic estimation from face images: Human vs. machine performance. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 37(6):1148–1161

  • Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12), 2639–2664.

    Article  MATH  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. CoRR abs/1512.03385

  • Huerta, I., Fernández, C., & Prati, A. (2014). Facial age estimation through the fusion of texture and local appearance descriptors. IEEE European conference on computer vision (ECCV)

  • Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., & Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. International Conference on Multimedia

  • Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an ensemble of regression trees. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems (NIPS)

  • Kwon, Y. H., & da Vitoria, Lobo N. (1999). Age classification from facial images. Computer Vision and Image Understanding (CVIU), 74(1), 1–21.

    Article  Google Scholar 

  • Lanitis, A., Draganova, C., & Christodoulou, C. (2004). Comparing different classifiers for automatic age estimation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1):621–628

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Levi, G., & Hassner, T. (2015). Age and gender classification using convolutional neural networks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp 34–42

  • Liu, X., Li, S., Kan, M., Zhang, J., Wu, S., Liu, W., Han, H., Shan, S., & Chen, X. (2015). Agenet: Deeply learned regressor and classifier for robust apparent age estimation. IEEE International Conference on Computer Vision (ICCV) Workshops

  • Luu, K., Ricanek, K., Bui, T. D., & Suen, C. Y. (2009). Age estimation using active appearance models and support vector machine regression. IEEE International Conference on Biometrics: Theory, Applications, and Systems (ed).

  • Luu, K., Seshadri, K., Savvides, M., Bui, T.D., & Suen, C.Y. (2011). Contourlet appearance model for facial age estimation. International Joint Conference on Biometrics (IJCB)

  • Mathias, M., Benenson, R., Pedersoli, M., & Van Gool, L. (2014). Face detection without bells and whistles. IEEE European Conference on Computer Vision (ECCV)

  • Panis, G., Lanitis, A., Tsapatsoulis, N., & Cootes, T. F. (2016). Overview of research on facial ageing using the fg-net ageing database. IET Biometrics, 5(2), 37–46.

    Article  Google Scholar 

  • Ramanathan, N., & Chellappa, R. (2006). Modeling age progression in young faces. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Ricanek, K., & Tesafaye, T. (2006). Morph: a longitudinal image database of normal adult age-progression. Automatic Face and Gesture Recognition (FGR)

  • Rothe, R., Timofte, R., & Van Gool, L. (2015). Dex: Deep expectation of apparent age from a single image. IEEE International Conference on Computer Vision (ICCV) Workshops

  • Rothe, R., Timofte, R., & Van Gool, L. (2016). Some like it hot-visual guidance for preference prediction. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252.

    Article  MathSciNet  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556

  • Suo, J., Zhu, S. C., Shan, S., & Chen, X. (2010). A compositional and dynamic model for face aging. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32(3), 385–401.

    Article  Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. TIEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Taigman, Y., Yang, M., Ranzato, M., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Uricar, M., Timofte, R., Rothe, R., Matas, J., & Van Gool, L. (2016). Structured output svm prediction of apparent age, gender and smile from deep features. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops

  • van der Maaten, L., & Hinton, G. E. (2008). Visualizing high-dimensional data using t-SNE. Journal of Machine Learning Research (JMLR), 9, 2579–2605.

    MATH  Google Scholar 

  • Wang, X., Guo, R., & Kambhamettu, C. (2015). Deeply-learned feature for age estimation. IEEE Winter Conference on Applications of Computer Vision (WACV)

  • Xu, Z., Chen, H., Zhu, S. C., & Luo, J. (2008). A hierarchical compositional model for face representation and sketching. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 30(6), 955–969.

    Article  Google Scholar 

  • Yan, S., Wang, H., Tang, X., & Huang, T.S. (2007). Learning auto-structured regressor from uncertain nonnegative labels. IEEE International Conference on Computer Vision (ICCV)

  • Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., & Huang, T.S. (2008). Regression from patch-kernel. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Yang, X., Gao, B.B., Xing, C., Huo, Z.W., Wei, X.S., Zhou, Y., Wu, J., & Geng, X. (2015). Deep label distribution learning for apparent age estimation. IEEE International Conference on Computer Vision (ICCV) Workshops

  • Yang, Z., & Ai, H. (2007). Demographic classification with local binary patterns. International Conference on Biometrics (ICB)

  • Yi, D., Lei, Z., & Li, S.Z. (2014). Age estimation by multi-scale convolutional network. Asian Conference on Computer Vision (ACCV)

  • Zeiler, M.D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. IEEE European Conference on Computer Vision (ECCV)

  • Zhang, Y., & Yeung, D.Y. (2010). Multi-task warped gaussian process for personalized age estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

  • Zhu, Y., Li, Y., Mu, G., & Guo, G. (2015). A study on apparent age estimation. IEEE International Conference on Computer Vision (ICCV) Workshops

Download references

Acknowledgments

This work was supported by the KTI-SUPSI (#2-69650-14) project and by an NVidia GPU grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Rothe.

Additional information

Communicated by Cordelia Schmid, Sergio Escalera, Jordi Gonzàlez, Xavier Barò, Isabelle Guyon and Hugo Jair Escalante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rothe, R., Timofte, R. & Van Gool, L. Deep Expectation of Real and Apparent Age from a Single Image Without Facial Landmarks. Int J Comput Vis 126, 144–157 (2018). https://doi.org/10.1007/s11263-016-0940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-016-0940-3

Keywords

Navigation