Skip to main content
Log in

Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Galić et al. (Journal of Mathematical Imaging and Vision 31:255–269, 2008) have shown that compression based on edge-enhancing anisotropic diffusion (EED) can outperform the quality of JPEG for medium to high compression ratios when the interpolation points are chosen as vertices of an adaptive triangulation. However, the reasons for the good performance of EED remained unclear, and they could not outperform the more advanced JPEG 2000. The goals of the present paper are threefold: Firstly, we investigate the compression qualities of various partial differential equations. This sheds light on the favourable properties of EED in the context of image compression. Secondly, we demonstrate that it is even possible to beat the quality of JPEG 2000 with EED if one uses specific subdivisions on rectangles and several important optimisations. These amendments include improved entropy coding, brightness and diffusivity optimisation, and interpolation swapping. Thirdly, we demonstrate how to extend our approach to 3-D and shape data. Experiments on classical test images and 3-D medical data illustrate the high potential of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acar, T., & Gökmen, M. (1994). Image coding using weak membrane model of images. In A. K. Katsaggelos (Ed.), Proceedings of SPIE on Visual Communications and Image Processing ’94 (Vol. 2308). Bellingham: SPIE Press.

  • Alter, F., Durand, S., & Froment, J. (2005). Adapted total variation for artifact free decompression of JPEG images. Journal of Mathematical Imaging and Vision, 23(2), 199–211.

    Article  MathSciNet  Google Scholar 

  • Aly, H. A., & Dubois, E. (2005). Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 14(10), 1647–1659.

    Article  MathSciNet  Google Scholar 

  • Aronsson, G. (1967). Extension of functions satisfying Lipschitz conditions. Arkiv för Matematik, 6(6), 551–561.

    Article  MATH  MathSciNet  Google Scholar 

  • Aurich, V., & Daub, U. (1996). Bilddatenkompression mit geplanten Verlusten und hoher Rate. In B. Jähne, P. Geißler, H. Haußecker, & F. Hering (Eds.), Mustererkennung 1996 (pp. 138–146). Berlin: Springer.

    Chapter  Google Scholar 

  • Bae, E., & Weickert, J. (2010). Partial differential equations for interpolation and compression of surfaces. In M. Daehlen, M. Floater, T. Lyche, J. L. Merrien, K. Mørken, & L. L. Schumaker (Eds.), Mathematical methods for curves and surfaces. Lecture notes in computer science (Vol. 5862, pp. 1–14). Berlin: Springer.

  • Battiato, S., Gallo, G., & Stanco, F. (2003). Smart interpolation by anisotropic diffusion. In Proceedings of Twelvth International Conference on Image Analysis and Processing (pp. 572–577). Montova: IEEE Computer Society Press.

  • Belahmidi, A., & Guichard, F. (2004). A partial differential equation approach to image zoom. In Procroceedings of 2004 IEEE International Conference on Image Processing (Vol. 1, pp. 649–652), Singapore.

  • Belhachmi, Z., Bucur, D., Burgeth, B., & Weickert, J. (2009). How to choose interpolation data in images. SIAM Journal on Applied Mathematics, 70(1), 333–352.

    Article  MATH  MathSciNet  Google Scholar 

  • Bertalmío, M., Sapiro, G., Caselles, V., & Ballester, C. (2000). Image inpainting. In Proceedings of SIGGRAPH 2000 (pp. 417–424), New Orleans.

  • Bornemann, F., & März, T. (2007). Fast image inpainting based on coherence transport. Journal of Mathematical Imaging and Vision, 28(3), 259–278.

    Article  MathSciNet  Google Scholar 

  • Borzì, A., Grossauer, H., & Scherzer, O. (2005). Analysis of iterative methods for solving a Ginzburg–Landau equation. International Journal of Computer Vision, 64(2–3), 203–219.

    Article  Google Scholar 

  • Bougleux, S., Peyré, G., & Cohen, L. (2009). Image compression with anisotropic triangulations. In Proceedings of Tenth International Conference on Computer Vision, Kyoto.

  • Bourdon, P., Augereau, B., Chatellier, C., & Olivier, C. (2004). MPEG-4 compression artifacts removal on color video sequences using 3D nonlinear diffusion. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (Vol. 3, pp 729–732). Montreal: IEEE Computer Society Press.

  • Bourne, R. (2010). Fundamentals of digital imaging in medicine. London: Springer.

    Book  Google Scholar 

  • Bruckstein, A. M. (1993). On image extrapolation. Technical Report on CIS9316. Haifa: Computer Science Department, Technion.

  • Bruhn, A., & Weickert, J. (2006). A confidence measure for variational optic flow methods. In R. Klette, R. Kozera, L. Noakes, & J. Weickert (Eds.), Geometric properties from incomplete data. Computational imaging and vision (Vol. 31, pp. 283–297). Dordrecht: Springer.

  • Candés, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  MATH  Google Scholar 

  • Carlsson, S. (1988). Sketch based coding of grey level images. Signal Processing, 15, 57–83.

    Article  Google Scholar 

  • Caselles, V., Morel, J. M., & Sbert, C. (1998). An axiomatic approach to image interpolation. IEEE Transactions on Image Processing, 7(3), 376–386.

    Article  MATH  MathSciNet  Google Scholar 

  • Catté, F., Lions, P. L., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 32, 1895–1909.

    Article  Google Scholar 

  • Chan, T. F., & Shen, J. (2001). Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation, 12(4), 436–449.

    Article  Google Scholar 

  • Chan, T. F., & Zhou, H. M. (2000). Total variation improved wavelet thresholding in image compression. In Proceedings of Seventh International Conference on Image Processing (Vol. 2, pp. 391–394). Vancouver, Canada.

  • Charbonnier, P., Blanc-Féraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298–311.

    Article  Google Scholar 

  • Demaret, L., Dyn, N., & Iske, A. (2006). Image compression by linear splines over adaptive triangulations. Signal Processing, 86(7), 1604–1616.

    Article  MATH  Google Scholar 

  • Desai, U. Y., Mizuki, M. M., Masaki, I., & Horn, B. K. P. (1996). Edge and mean based image compression. Technical Report 1584 (A.I. Memo). Cambridge, MA: Artificial Intelligence Lab., Massachusetts Institute of Technology.

  • Dipperstein, M. (2009). Michael Dipperstein’s page o’stuff. http://michael.dipperstein.com/index.html.

  • Distasi, R., Nappi, M., & Vitulano, S. (1997). Image compression by B-tree triangular coding. IEEE Transactions on Communications, 45(9), 1095–1100.

    Article  Google Scholar 

  • Elder, J. H. (1999). Are edges incomplete? International Journal of Computer Vision, 34(2/3), 97–122.

    Article  Google Scholar 

  • Facciolo, G., Lecumberry, F., Almansa, A., Pardo, A., Caselles, V., & Rougé, B. (2006). Constrained anisotropic diffusion and some applications. In: Proceeings of 2006 British Machine Vision Conference (Vol. 3, pp. 1049–1058), Edinburgh.

  • Ford, G. E. (1996). Application of inhomogeneous diffusion to image and video coding. In Proceedings of 13th Asilomar Conference on Signals, Systems and Computers (Vol. 2, pp. 926–930), Asilomar, CA.

  • Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2005). Towards PDE-based image compression. In N. Paragios, O. Faugeras, T. Chan, & C. Schnörr (Eds.), Variational, Geometric and Level-Set Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 3752, pp. 37–48). Berlin: Springer.

  • Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. P. (2008). Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision, 31(2–3), 255–269.

    MathSciNet  Google Scholar 

  • Gourlay, A. R. (1970). Hopscotch: A fast second-order partial differential equation solver. IMA Journal of Applied Mathematics, 6(4), 375–390.

    Article  MATH  MathSciNet  Google Scholar 

  • Huffman, D. A. (1952). A method for the construction of minimum redundancy codes. Proceedings of the IRE, 40, 1098–1101.

    Article  Google Scholar 

  • Hummel, R., & Moniot, R. (1989). Reconstructions from zero-crossings in scale space. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37, 2111–2130.

    Article  Google Scholar 

  • Iijima, T. (1959). Basic theory of pattern observation. In Papers of Technical Group on Automata and Automatic Control, Japan: IECE (in Japanese).

  • Johansen, P., Skelboe, S., Grue, K., & Andersen, J. D. (1986). Representing signals by their toppoints in scale space. In Proceedings of Eighth International Conference on Pattern Recognition (pp 215–217). Paris.

  • Kanters, F. M. W., Lillholm, M., Duits, R., Jansen, B. J. P., Platel, B., Florack, L., et al. (2005). On image reconstruction from multiscale top points. In R. Kimmel, N. Sochen, & J. Weickert (Eds.), Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 3459, pp. 431–439). Berlin: Springer.

  • Kopilovic, I., & Szirányi, T. (2005). Artifact reduction with diffusion preprocessing for image compression. Optical Engineering, 44(2), 1–14.

    Google Scholar 

  • Köstler, H., Stürmer, M., Freundl, C., & Rüde, U. (2007). PDE based video compression in real time. Technical Report 07–11, Lehrstuhl für Informatik 10, Univ. Erlangen-Nürnberg, Germany.

  • Kunt, M., Ikonomopoulos, A., & Kocher, M. (1985). Second-generation image-coding techniques. Proceedings of the IEEE, 73(4), 549–574.

    Article  Google Scholar 

  • Lillholm, M., Nielsen, M., & Griffin, L. D. (2003). Feature-based image analysis. International Journal of Computer Vision, 52(2/3), 73–95.

    Article  Google Scholar 

  • Liu, D., Sun, X., Wu, F., Li, S., & Zhang, Y. Q. (2007). Image compression with edge-based inpainting. IEEE Transactions on Circuits, Systems and Video Technology, 17(10), 1273–1286.

    Article  Google Scholar 

  • Mahoney, M. (2005). Adaptive weighing of context models for lossless data compression. Technical Report CS-2005-16. Melbourne, FL: Florida Institute of Technology.

  • Mahoney, M. (2009). Data compression programs. http://mattmahoney.net/dc/.

  • Mainberger, M., & Weickert, J. (2009). Edge-based image compression with homogeneous diffusion. In X. Jiang & N. Petkov (Eds.), Computer Analysis of Images and Patterns. Lecture Notes in Computer Science (Vol. 5702, pp. 476–483). Berlin: Springer.

  • Mainberger, M., Hoffmann, S., Weickert, J., Tang, C. H., Johannsen, D., Neumann, F., et al. (2012). Optimising spatial and tonal data for homogeneous diffusion inpainting. In A. M. Bruckstein, t B. er Haar Romeny, A. M. Bronstein, & M. M. Bronstein (Eds.), Scale Space and Variational Methods in Computer Vision, Lecture Notes in Computer Science (pp. 26–37). Berlin: Springer.

  • Malgouyres, F., & Guichard, F. (2001). Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 39(1), 1–37.

    Article  MATH  MathSciNet  Google Scholar 

  • Mallat, S., & Zhong, S. (1992). Characterisation of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 720–732.

    Article  Google Scholar 

  • Masnou, S., & Morel, J. M. (1998). Level lines based disocclusion. In Proceedings of the 1998 IEEE International Conference on Image Processing (Vol. 3, pp. 259–263), Chicago, IL.

  • National Electrical Manufacturers Association. (2004). Digital Imaging and Communications in Medicine (DICOM): Part 5 Data Structures and Encoding. PS 3.5-2004.

  • Pennebaker, W. B., & Mitchell, J. L. (1992). JPEG: Still image data compression standard. New York: Springer.

    Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 629–639.

    Article  Google Scholar 

  • Peter, P. (2012). Three-dimensional data compression with anisotropic diffusion. In Proceedings of DAGM-OAGM 2012 Symposium for Pattern Recognition, Young Researchers Forum. Berlin: Springer.

  • Rane, S. D., Sapiro, G., & Bertalmio, M. (2003). Structure and texture filling-in of missing image blocks in wireless transmission and compression applications. IEEE Transactions on Image Processing, 12(3), 296–302.

    Article  MathSciNet  Google Scholar 

  • Rissanen, J. J. (1976). Generalized Kraft inequality and arithmetic coding. IBM Journal of Research and Development, 20(3), 198–203.

    Google Scholar 

  • Roussos, A., & Maragos, P. (2007). Vector-valued image interpolation by an anisotropic diffusion-projection PDE. In F. Sgallari, F. Murli, & N. Paragios (Eds.), Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science (Vol. 4485, pp. 104–115). Berlin: Springer.

  • Schmaltz, C., Weickert, J., & Bruhn, A. (2009). Beating the quality of JPEG 2000 with anisotropic diffusion. In J. Denzler, G. Notni, & H. Süße (Eds.), Pattern Recognition. Lecture Notes in Computer Science (Vol. 5748, pp. 452–461). Berlin: Springer.

  • Solé, A., Caselles, V., Sapiro, G., & Arandiga, F. (2004). Morse description and geometric encoding of digital elevation maps. IEEE Transactions on Image Processing, 13(9), 1245–1262.

    Article  MathSciNet  Google Scholar 

  • Strobach, P. (1991). Quadtree-structured recursive plane decomposition coding of images. IEEE Transactions on Signal Processing, 39(6), 1380–1397.

    Article  Google Scholar 

  • Sullivan, G. J., & Baker, R. J. (1994). Efficient quadtree coding of images and video. IEEE Transactions on Image Processing, 3(3), 327–331.

    Article  Google Scholar 

  • Taubman, D. S., & Marcellin, M. W. (Eds.). (2002). JPEG 2000: Image compression fundamentals. Standards and practice. Boston: Kluwer.

  • Telea, A. (2004). An image inpainting technique based on the fast marching method. Journal of Graphics Tools, 9(1), 23–34.

    Article  Google Scholar 

  • Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. International Journal of Computer Vision, 68(1), 65–82.

    Article  Google Scholar 

  • Tschumperlé, D., & Deriche, R. (2005). Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 506–516.

    Article  Google Scholar 

  • Tsuji, H., Sakatani, T., Yashima, Y., & Kobayashi, N. (2002). A nonlinear spatio-temporal diffusion and its application to prefiltering in MPEG-4 video coding. In Proceedings of 2002 IEEE International Conference on Image Processing (Vol. 1, pp. 85–88), Rochester, NY.

  • Tsuji, H., Tokumasu, S., Takahashi, H., & Nakajima, M. (2007). Spatial prefiltering scheme based on anisotropic diffusion in low-bitrate video coding. Systems and Computers in Japan, 38(10), 34–45.

    Article  Google Scholar 

  • Weickert, J. (1996). Theoretical foundations of anisotropic diffusion in image processing. Computing Supplement, 11, 221–236.

    Article  Google Scholar 

  • Weickert, J. (1999). Nonlinear diffusion filtering. In B. Jähne, H. Haußecker, & P. Geißler (Eds.), Handbook on computer vision and applications. Signal processing and pattern recognition (Vol. 2, pp. 423–450). San Diego: Academic Press.

    Google Scholar 

  • Weickert, J., & Brox, T. (2002). Diffusion and regularization of vector- and matrix-valued images. In M. Z. Nashed & O. Scherzer (Eds.), Inverse problems, image analysis, and medical imaging, contemporary mathematics (Vol. 313, pp. 251–268). Providence: AMS.

    Chapter  Google Scholar 

  • Weickert, J., & Welk, M. (2006). Tensor field interpolation with PDEs. In J. Weickert & H. Hagen (Eds.), Visualization and processing of tensor fields (pp. 315–325). Berlin: Springer.

    Chapter  Google Scholar 

  • Weickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3), 237–252.

    Article  MATH  MathSciNet  Google Scholar 

  • Welch, T. A. (1984). A technique for high-performance data compression. Computer, 17(6), 8–19.

    Article  Google Scholar 

  • Wu, Y., Zhang, H., Sun, Y., & Guo, H. (2009) Two image compression schemes based on image inpainting. In: Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization (pp. 816–820). IEEE Computer Society Press: San Francisco, CA.

  • Xie, Z., Franklin, W. R., Cutler, B., Andrade, M. A., Inanc, M., & Tracy, D. M. (2007). Surface compression using over-determined Laplacian approximation. In F. T. Luk (Ed.), Advanced Signal Processing Algorithms, Architectures, and Implementations XVII. Proceedings of SPIE (Vol. 6697). Bellingham: SPIE Press.

  • Xiong, Z. W., Sun, X. Y., Wu, F., & Li, S. P. (2007) Image coding with parameter-assistant inpainting. In: Proceedings of the 2007 IEEE International Conference on Image Processing (Vol. 2, pp. 369–372), San Antonio, TX.

  • Zeevi, Y., & Rotem, D. (1986). Image reconstruction from zero-crossings. IEEE Transactions on Acoustics, Speech, and Signal Processing, 34, 1269–1277.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Irena Galić (University of Osijek, Croatia) for fruitful discussions and for providing two images and code of her compression algorithm, David Tschumperlé (French National Center for Scientific Research, France) for providing the image in Fig. 1, and Wiro Niessen (University Medical Center Rotterdam, The Netherlands) for providing the test image in Fig. 12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Schmaltz.

Additional information

Communicated by Hiroshi Ishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmaltz, C., Peter, P., Mainberger, M. et al. Understanding, Optimising, and Extending Data Compression with Anisotropic Diffusion. Int J Comput Vis 108, 222–240 (2014). https://doi.org/10.1007/s11263-014-0702-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-014-0702-z

Keywords

Navigation