Skip to main content
Log in

Online Detection of Repeated Structures in Point Clouds of Urban Scenes for Compression and Registration

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Laser range scans of urban areas have a distinctive geometry dominated by facade and ground planes and repetitive regular fenestration. Detection of these ubiquitous features provides profound insights into the scene. We present a novel method for detecting major planes and repetitive architectural features. Armed with this knowledge we illustrate its application in compression and registration of range scans. What is more our algorithm operates online, processing the scan as it is retrieved by the scanner. This realtime approach opens up new possibilities in range data segmentation, compression and registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. We will use the terms column and scanline interchangeably.

References

  • Aiger, D., Mitra, N., & Cohen-Or, D. (2008). 4-points congruent sets for robust pairwise surface registration. In SIGGRAPH (Vol. 27).

    Google Scholar 

  • Allen, P. K., Stamos, I., Troccoli, A., Smith, B., Leordeanu, M., & Murray, S. (2003). New methods for digital modeling of historic sites. IEEE Computer Graphics and Applications, 23(6), 32–41.

    Article  Google Scholar 

  • Bellon, O. R. P., & Silva, L. (2002). New improvements to range image segmentation by edge detection. IEEE Signal Processing Letters, 9(2), 43–45.

    Article  Google Scholar 

  • Berner, A., Bokeloh, M., Wand, M., Schilling, A., & Seidel, H. P. (2008). A graph-based approach to symmetry detection. In Symposium on volume and point-based graphics (pp. 1–8). Los Angeles: Eurographics Association.

    Google Scholar 

  • Besl, P. J., & Jain, R. C. (1988). Segmentation through variable-order surface fitting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2), 167–192.

    Article  Google Scholar 

  • Besl, P. J., & McKay, N. D. (1992). A method for registration of 3D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2).

  • Bokeloh, M., Berner, A., Seidel, M. H. P., & Schilling, A. (2009). Symmetry detection using line features. Computer Graphics Forum, 28, 607–706.

    Article  Google Scholar 

  • Cazals, F., & Pouget, M. (2005). Estimating differential quantities using polynomial fitting of osculating jets. Computer Aided Geometric Design, 22, 121–146. doi:10.1006/cviu.2002.0963.

    Article  MathSciNet  MATH  Google Scholar 

  • Chao, C., & Stamos, I. (2007). Range image segmentation for modeling and object detection in urban scenes. In The 6th international conference on 3-D digital imaging and modeling, Montreal, Canada.

    Google Scholar 

  • Friedman, S., & Stamos, I. (2011). Real time detection of repeated structures in point clouds of urban scenes. In The first conference of 3D imaging, modeling, processing, visualization and transmission (pp. 220–227).

    Chapter  Google Scholar 

  • Huber, D. F., & Hebert, M. (2003). Fully automatic registration of multiple 3D data sets. Image and Vision Computing, 21(7), 637–650.

    Article  Google Scholar 

  • Huynh, D. (2009). Metrics for 3D rotations: Comparison and analysis. Journal of Mathematical Imaging and Vision, 35, 155–164.

    Article  MathSciNet  Google Scholar 

  • Lee, S. C., & Nevatia, R. (2004). Extraction and integration of window in a 3D building model from ground view images. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 113–120). doi:10.1109/CVPR.2004.1315152.

    Google Scholar 

  • Leica Geosystems (2012). http://hds.leica-geosystems.com/

  • Li, Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B., & Mitra, N. J. (2011). 2D–3D fusion for layer decomposition of urban facades. In International conference of computer vision (pp. 882–889).

    Google Scholar 

  • Marshall, D., Lukacs, G., & Martin, R. (2001). Robust segmentation of primitives from range data in the presence of geometric degeneracy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3), 304–314.

    Article  Google Scholar 

  • Martinet, A., Soler, C., Holzschuch, N., & Sillion, F. X. (2006). Accurate detection of symmetries in 3D shapes. ACM Transactions on Graphics, 25(2), 439–464.

    Article  Google Scholar 

  • Mayer, H., & Reznik, S. (2007). Building facade interpretation from uncalibrated wide-baseline image sequences. ISPRS Journal of Photogrammetry and Remote Sensing, 61(6), 371–380.

    Article  Google Scholar 

  • Mitra, N. J., Pauly, M., Wand, M., & Ceylan, D. (2012). Symmetry in 3D geometry: extraction and applications. In EUROGRAPHICS state-of-the-art report (pp. 1–28).

    Google Scholar 

  • Muller, P., Wonka, P., Haegler, S., Ulmer, A., & Gool, L. V. (2006). Procedural modeling of buildings. Computer Graphics, 25(3), 614–623.

    Google Scholar 

  • Muller, P., Zeng, G., Wonka, P., & Gool, L. V. (2007). Image-based procedural modeling of facades. Computer Graphics, 26(3), 85.

    Google Scholar 

  • Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., & Chen, B. (2010). Smartboxes for interactive urban reconstruction. ACM Transactions on Graphics, 29(4), 93.

    Article  Google Scholar 

  • Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832.

    Article  Google Scholar 

  • Park, M., Brocklehurst, K., Collins, R., & Liu, Y. (2009). Deformed lattice detection in real-world images using mean-shift belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(1). Special Issue on Probabilistic Graphical Models

  • Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., & Guibas, L. (2008). Discovering structural regularity in 3D geometry. ACM Transactions on Graphics, 27(3), 1–11.

    Article  Google Scholar 

  • Pele, O., & Werman, M. (2010). The quadratic-chi histogram distance family. In K. Daniilidis, P. Maragos, & N. Paragios (Eds.), Lecture notes in computer science: Vol. 6312. Computer vision ECCV 2010 (pp. 749–762). Berlin: Springer.

    Chapter  Google Scholar 

  • Pulli, K., & Pietikinen, M. (1993). Range image segmentation based on decomposition of surface normals. In Proceedings of the Scandinavian conference on image analysis (Vol. 2, p. 893).

    Google Scholar 

  • Rusinkiewicz, S., & Levoy, M. (2001). Efficient variants of the ICP algorithm. In The 3rd international conference on 3D digital imaging and modeling (pp. 145–152).

    Chapter  Google Scholar 

  • Shen, C. H., Huang, S. S., Fu, H., & Hu, S. M. (2011). Adaptive partitioning of urban facades. ACM Transactions on Graphics, 30(6), 184.

    Article  Google Scholar 

  • Stamos, I., & Allen, P. K. (2002). Geometry and texture recovery of scenes of large scale. Computer Vision and Image Understanding, 88(2), 94–118. doi:10.1006/cviu.2002.0963.

    Article  MATH  Google Scholar 

  • Stamos, I., & Leordeanu, M. (2003). Automated feature-based range registration of urban scenes of large scale. In IEEE conference on computer vision and pattern recognition (Vol. 2, pp. 555–561).

    Google Scholar 

  • Stamos, I., Yu, G., Wolberg, G., & Zokai, S. (2006). 3D modeling using planar segments and mesh elements. In Intl. symposium on 3D data processing, visualization and transmission, Chapel Hill.

    Google Scholar 

  • Stamos, I., Liu, L., Chao, C., Wolberg, G., Yu, G., & Zokai, S. (2008). Integrating automated range registration with multiview geometry for the photorealistic modeling of large-scale scenes. International Journal of Computer Vision, 78(2–3), 237–260. Special Issue on Modeling and Representation of Large-Scale 3D Scenes

    Article  Google Scholar 

  • Stiny, G. (1982). Spatial relations and grammars. Environment and Planning, 9, 313–314.

    Google Scholar 

  • Teboul, O., Simon, L., Koutsourakis, P., & Paragios, N. (2010). Segmentation of building facades using procedural shape priors. In IEEE conference on computer vision and pattern recognition (pp. 3105–3112). doi:10.1109/CVPR.2010.5540068.

    Google Scholar 

  • Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., & Paragios, N. (2011). Shape grammar parsing via reinforcement learning. In IEEE conference on computer vision and pattern recognition (pp. 2273–2280). doi:10.1109/CVPR.2011.5995319.

    Google Scholar 

  • Triebel, R., Kersting, K., & Burgard, W. (2006). Robust 3D scan point classification using associative Markov networks. In IEEE international conference on robotics and automation (pp. 2603–2608).

    Google Scholar 

  • Wami, M. A., & Batchelor, B. G. (1994). Edge-region-based segmentation of range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(3), 314–319.

    Article  Google Scholar 

  • Wu, C., Frahm, J. M., & Pollefeys, M. (2010). Detecting large repetitive structures with salient boundaries. In European conference on computer vision (Vol. 6312, pp. 142–155).

    Google Scholar 

  • Yu, Y., Ferencz, A., & Malik, J. Extracting objects from range and radiance images. IEEE Transactions on Visualization and Computer Graphics, 351–364 (2001).

  • Zhao, H., & Shibasaki, R. (2003). Reconstructing a textured CAD model of an urban environment using vehicle-borne laser range scanners and line cameras. Machine Vision and Applications, 14(1), 35–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Stamos.

Additional information

This work has been supported in part by the following NSF grants: IIS-0915971, CCF-0916452 and MRI CNS-0821384. We would like to thank Tom Flynn for his labeling and registration software. We are also thankful to the anonymous reviewers for their helpful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, S., Stamos, I. Online Detection of Repeated Structures in Point Clouds of Urban Scenes for Compression and Registration. Int J Comput Vis 102, 112–128 (2013). https://doi.org/10.1007/s11263-012-0575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0575-y

Keywords

Navigation