Skip to main content
Log in

A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We present the first method to handle curvature regularity in region-based image segmentation and inpainting that is independent of initialization.

To this end we start from a new formulation of length-based optimization schemes, based on surface continuation constraints, and discuss the connections to existing schemes. The formulation is based on a cell complex and considers basic regions and boundary elements. The corresponding optimization problem is cast as an integer linear program.

We then show how the method can be extended to include curvature regularity, again cast as an integer linear program. Here, we are considering pairs of boundary elements to reflect curvature. Moreover, a constraint set is derived to ensure that the boundary variables indeed reflect the boundary of the regions described by the region variables.

We show that by solving the linear programming relaxation one gets reasonably close to the global optimum, and that curvature regularity is indeed much better suited in the presence of long and thin objects compared to standard length regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amini, A. A., Weymouth, T. E., & Jain, R. C. (1990). Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9), 855–867.

    Article  Google Scholar 

  • Bertalmío, M., Sapiro, G., Caselles, V., & Ballester, C. (2001). Image inpainting. In ACM SIGGRAPH, July 2001.

    Google Scholar 

  • Blake, A., & Zissermann, A. (1987). Visual reconstruction. Cambridge: MIT press.

    Google Scholar 

  • Bornemann, F., & März, T. (2007). Fast image inpainting based on coherence transport. Journal of Mathematical Imaging and Vision, 28(3), 259–278.

    Article  MathSciNet  Google Scholar 

  • Boykov, Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In IEEE international conference on computer vision (ICCV), Vancouver, Canada, July 2001.

    Google Scholar 

  • Boykov, Y., & Kolmogorov, V. N. (2003). Computing geodesics and minimal surfaces via graph cuts. In IEEE international conference on computer vision (ICCV), Nice, France, October 2003.

    Google Scholar 

  • Bruckstein, A. M., Netravali, A. N., & Richardson, T. J. (2001). Epi-convergence of discrete elastica. Applicable Analysis, 79, 137–171. Bob Caroll Special Issue.

    Article  MathSciNet  MATH  Google Scholar 

  • Cao, F., Gousseau, Y., Masnou, S., & Pérez, P. (2012). Geometrically guided expemplar-based inpainting. SIAM Journal on Imaging Sciences, submitted.

  • Chan, T. F., Kang, S. H., & Shen, J. (2002). Euler’s elastica and curvature based inpaintings. SIAM Journal on Applied Mathematics, 2, 564–592.

    MathSciNet  Google Scholar 

  • Chan, T. F., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Dantzig, G. B., & Thapa, M. N. (1997). Linear programming 1: introduction. Springer series in operations research. Berlin: Springer.

    MATH  Google Scholar 

  • El-Zehiry, N. Y., & Grady, L. (2010). Fast global optimization of curvature. In IEEE computer society conference on computer vision and pattern recognition (CVPR), San Francisco, California, June 2010.

    Google Scholar 

  • Esedoglu, S., & March, R. (2003). Segmentation with depth but without detecting junctions. Journal of Mathematical Imaging and Vision, 18, 7–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Goldlücke, B., & Cremers, D. (2011). Introducing total curvature for image processing. In IEEE international conference on computer vision (ICCV), Barcelona, Spain, November 2011.

    Google Scholar 

  • Grady, L. (2010). Minimal surfaces extend shortest path segmentation methods to 3d. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2), 321–334.

    Article  Google Scholar 

  • Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society Series B Methodological, 51(2), 271–279.

    Google Scholar 

  • Kanizsa, G. (1971). Contours without gradients or cognitive contours. Giornale Italiano Di Psicologia, 1, 93–112.

    Google Scholar 

  • Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., & Cremers, D. (2008). An experimental comparison of discrete and continuous shape optimization methods. In European conference on computer vision (ECCV), Marseille, France, October 2008.

    Google Scholar 

  • Masnou, S. (2002). Disocclusion: A variational approach using level lines. IEEE Transactions on Image Processing, 11, 68–76.

    Article  MathSciNet  Google Scholar 

  • Masnou, S., & Morel, J. M. (1998). Level-lines based disocclusion. In International conference on image processing (ICIP), Chicago, Michigan, 1998.

    Google Scholar 

  • Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42, 577–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolova, M., Esedoglu, S., & Chan, T. (2006). Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5), 1632–1648.

    Article  MathSciNet  MATH  Google Scholar 

  • Nitzberg, M., Mumford, D., & Shiota, T. (1993). Filtering, segmentation and depth. In LNCS, vol. 662. Berlin: Springer.

    Google Scholar 

  • Parent, P., & Zucker, S. W. (1989). Trace inference, curvature consistency, and curve detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8), 823–839.

    Article  Google Scholar 

  • Rudin, W. (1987). Real and complex analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Schoenemann, T., & Cremers, D. (2007). Introducing curvature into globally optimal image segmentation: minimum ratio cycles on product graphs. In IEEE international conference on computer vision (ICCV), Rio de Janeiro, Brazil, October 2007.

    Google Scholar 

  • Schoenemann, T., Kahl, F., & Cremers, D. (2009). Curvature regularity for region-based image segmentation and inpainting: A linear programming relaxation. In IEEE international conference on computer vision (ICCV), Kyoto, Japan, September 2009.

    Google Scholar 

  • Schoenemann, T., Kuang, Y., & Kahl, F. (2011). Curvature regularity for multi-label problems—standard and customized linear programming. In International workshop on energy minimization methods in computer vision and pattern recognition, St. Petersburg, Russia, July 2011.

    Google Scholar 

  • Schrijver, A. (1986). Theory of linear and integer programming. Wiley-Interscience series in discrete mathematics and optimization. New York: Wiley.

    MATH  Google Scholar 

  • Strandmark, P., & Kahl, F. (2011). Curvature regularization for curves and surfaces in a global optimization framework. In International workshop on energy minimization methods in computer vision and pattern recognition, St. Petersburg, Russia, July 2011.

    Google Scholar 

  • Sullivan, J. M. (1992). A crystalline approximation theorem for hypersurfaces. PhD thesis, Princeton University, Princeton, New Jersey.

  • Sullivan, J. M. (1994). Computing hypersurfaces which minimize surface energy plus bulk energy. In Motion by mean curvature and related topics (pp. 186–197).

    Chapter  Google Scholar 

  • Toshev, A., Taskar, B., & Daniilidis, K. (2010). Object detection via boundary structure segmentation. In IEEE computer society conference on computer vision and pattern recognition (CVPR), San Francisco, California, June 2010.

    Google Scholar 

  • Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving PDE’s. International Journal of Computer Vision, 68(1), 65–82.

    Article  Google Scholar 

  • Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: Teubner.

    MATH  Google Scholar 

  • Weickert, J. (2003). Coherence-enhancing shock filters. In Pattern recognition (proc. DAGM), Magdeburg, Germany, September 2003.

    Google Scholar 

  • Ye, Y. (1997). Interior point algorithms: theory and analysis. Wiley-Interscience series in discrete mathematics. New York: Wiley.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schoenemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenemann, T., Kahl, F., Masnou, S. et al. A Linear Framework for Region-Based Image Segmentation and Inpainting Involving Curvature Penalization. Int J Comput Vis 99, 53–68 (2012). https://doi.org/10.1007/s11263-012-0518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0518-7

Keywords

Navigation