Skip to main content
Log in

An Anisotropic Fourth-Order Diffusion Filter for Image Noise Removal

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Fourth-order nonlinear diffusion filters used for image noise removal are mainly isotropic filters. It means that the spatially varying diffusivity determined by a diffusion function is applied on the image regardless of the orientation of its local features. However, the optimal choice of parameters in the numerical solver of these filters for having a minimal distortion of the image features results in forming speckle noise on the denoised image and a very slow convergence rate especially when the noise level is moderately high. In this paper, a new fourth-order nonlinear diffusion filter is introduced, which has an anisotropic behavior on the image features. In the proposed filter, it is shown that a suitable choice for a set of diffusivity functions to unevenly control the strength of the diffusion on the directions of the level set and gradient leads to a good edge preservation capability compared to the other diffusion or regularization filters. The comparison of the results obtained by the proposed filter with those of the other second and fourth-order filters shows that the proposed method produces a noticeable improvement in the quality of denoised images evaluated subjectively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Lions, P.-L., & Morel, J.-M. (1992). Image selective smoothing and edge detection by nonlinear diffusion. ii. SIAM Journal on Numerical Analysis, 29(3), 845–866.

    Article  MathSciNet  MATH  Google Scholar 

  • Alvarez, L., Guichard, F., Lions, P.-L., & Morel, J.-M. (1993). Axioms and fundamental equations of image processing. Archive for Rational Mechanics and Analysis, 123(3), 199–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. M. (2005). A review of image denoising algorithms, with a new one. Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona, R. A., & Zhong, S. (1998). Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 7(3), 353–358.

    Article  Google Scholar 

  • Catte, F., Lions, P., Morel, J. M., & Coll, T. (1992). Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal Numerical Analysis, 29(1), 182–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 20(1–2), 89–97.

    MathSciNet  Google Scholar 

  • Chambolle, A., & Lions, P.-L. (1997). Image recovery via total variation minimization and related problems. Numerische Mathematik, 76(2), 167–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., & Shen, J. (2005). Image processing and analysis. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Chan, T. F., Golub, G. H., & Mulet, P. (1999). A nonlinear primal-dual method for total variation-based image restoration. SIAM Journal on Scientific Computing, 20(6), 1964–1977.

    Article  MathSciNet  Google Scholar 

  • Chan, T. F., Marquina, A., & Mulet, R. (2000). High order total variation-based image restoration. SIAM Journal on Scientific Computing, 22(2), 503–516.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, T. F., Esedoglu, S., & Park, F. E. (2005). A fourth order dual method for staircase reduction in texture extraction and image restoration problems (Technical report), UCLA Math Department CAM Report.

  • Didas, S., Weickert, J., & Burgeth, B. (2005). Stability and local feature enhancement of higher order nonlinear diffusion filtering. In Lecture notes in computer science : Vol. 3663. Pattern recognition (pp. 451–458). Berlin: Springer.

    Chapter  Google Scholar 

  • Didas, S., Setzer, S., & Steidl, G. (2006). Combined l 2 data and gradient fitting in conjunction with l 1 regularization (Technical report) Preprint No. 143, DFG Priority Programme 1114, Department of Mathematics, University of Bremen, Germany.

  • Didas, S., Setzer, S., & Steidl, G. (2009). Combined l 2 data and gradient fitting in conjunction with l 1 regularization. Advances in Computational Mathematics, 30(1), 79–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabor, D. (1965). Information theory in electron microscopy. Laboratory Investigation, 14, 801–807.

    Google Scholar 

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2004). Image sharpening by flows based on triple well potentials. Journal of Mathematical Imaging and Vision, 20(1–2), 121–31.

    Article  MathSciNet  Google Scholar 

  • Goldstein, T., & Osher, S. (2009). The split Bregman method for l 1-regularized problems. SIAM Journal on Imaging Sciences, 2(2), 323–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Hajiaboli, M. R. (2009a). A self-governing hybrid model for noise removal. In Lecture notes in computer science (Vol. 5414, pp. 295–305). Berlin: Springer.

    Google Scholar 

  • Hajiaboli, M. R. (2009b). An anisotropic fourth-order partial differential equation for noise removal. In Lecture notes in computer science (Vol. 5567, pp. 356–367). Berlin: Springer.

    Google Scholar 

  • Hamza, A. B., Luque-Escamilla, P. L., Martinez-Aroza, J., & Roman-Roldan, R. (1999). Removing noise and preserving details with relaxed median filters. Journal of Mathematical Imaging and Vision, 11(2), 161–177.

    Article  MathSciNet  Google Scholar 

  • Kamgar Parsi, B., Kamgar Parsi, B., & Rosenfeld, A. (1999). Optimally isotropic Laplacian operator. IEEE Transactions on Image Processing, 8(10), 1467–1472.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, F., Shen, C., Fan, J., & Shen, C. (2007). Image restoration combining a total variational filter and a fourth-order filter. Journal of Visual Communication and Image Representation, 18, 322–330.

    Article  Google Scholar 

  • Lysaker, M., Lundervold, A., & Tai, X.-C. (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing, 12(12), 1579–1589.

    Article  Google Scholar 

  • Lysaker, M., Osher, S., & Tai, X.-C. (2004). Noise removal using smoothed normals and surface fitting. IEEE Transactions on Image Processing, 13(10), 1345–1357.

    Article  MathSciNet  Google Scholar 

  • Marquina, A., & Osher, S. (2001). Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM Journal of Scientific Computing, 22(2), 387–405.

    Article  MathSciNet  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79, 14–49.

    Article  MathSciNet  Google Scholar 

  • Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

    Article  Google Scholar 

  • Pratt, W. K. (1977). Digital image processing. New York: Wiley.

    Google Scholar 

  • Rahman, T., Tai, X.-C., & Osher, S. (2007). A TV-Stokes denoising algorithm. In SSVM (pp. 473–83). Berlin, Germany.

  • Rajan, J., Kannan, K., & Kaimal, M. R. (2008). An improved hybrid model for molecular image denoising. Journal of Mathematical Imaging and Vision, 31, 73–79.

    Article  MathSciNet  Google Scholar 

  • Rudin, L., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D, 60, 259–268.

    Article  MATH  Google Scholar 

  • Sapiro, G. (1996). Vector (self) snakes: a geometric framework for color, texture, and multiscale image segmentation. In Proceedings of 1996 IEEE international conference on image processing (ICIP) (Vol. 1, pp. 817–820).

  • Scherzer, O., & Weickert, J. (2000). Relations between regularization and diffusion filtering. Journal of Mathematical Imaging and Vision, 12(1), 43–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Steidl, G. (2006). A note on the dual treatment of higher-order regularization functionals. Computing, 76(1–2), 135–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Stoer, J., & Bulirsch, R. (2002). Tests in applied mathematics : Vol. 12. Introduction to numerical analysis. Berlin: Springer.

    MATH  Google Scholar 

  • Strong, D. M., & Chan, T. F. (1996a). Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing (Technical report). UCLA Math Department CAM Report.

  • Strong, D. M., & Chan, T. F. (1996b). Relation of regularization parameter and scale in total variation based image denoising (Technical report). Diusion in Image Processing, UCLA Math Department CAM Report.

  • Tasdizen, T., Whitaker, R., Burchard, P., & Osher, S. (2002). Geometric surface smoothing via anisotropic diffusion of normals. In Proceedings of IEEE visualization 2002 (Cat. No.02CH37370) (pp. 125–132), Piscataway, NJ, USA.

  • Tschumperle, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving pde’s. International Journal of Computer Vision, 68(1), 65–82.

    Article  Google Scholar 

  • Tschumperle, D., & Deriche, R. (2005). Vector-valued image regularization with pdes: a common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 506–517.

    Article  Google Scholar 

  • Vogel, C. R., & Oman, M. E. (1996). Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 17(1), 227–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Weickert, J. (1997). A review of nonlinear diffusion filtering. In Scale-space theory in computer vision (pp. 3–28). First international conference, scale-space’97. Proceedings, Utrecht, Netherlands, 1997. Berlin: Springer.

    Google Scholar 

  • Weickert, J. (1998). Anisotropic diffusion in image processing. Stuttgart: B. G. Teubner.

    MATH  Google Scholar 

  • Weickert, J. (1999). Coherence-enhancing diffusion filtering. International Journal of Computer Vision, 31(2), 111–127.

    Article  MathSciNet  Google Scholar 

  • You, Y.-L., & Kaveh, M. (2000). Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing, 9(10), 1723–1730.

    Article  MathSciNet  MATH  Google Scholar 

  • You, Y.-L., Xu, W., Tannenbaum, A., & Kaveh, M. (1996). Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing, 5(11), 1539–1553.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Hajiaboli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajiaboli, M.R. An Anisotropic Fourth-Order Diffusion Filter for Image Noise Removal. Int J Comput Vis 92, 177–191 (2011). https://doi.org/10.1007/s11263-010-0330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0330-1

Keywords

Navigation