Skip to main content

Advertisement

Log in

Rectilinearity of 3D Meshes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we propose and evaluate a novel shape measure describing the extent to which a 3D polygon mesh is rectilinear. The rectilinearity measure is based on the maximum ratio of the surface area to the sum of three orthogonal projected areas of the mesh. It has the following desirable properties: 1) the estimated rectilinearity is always a number from (0,1]; 2) the measure is invariant under scale, rotation, and translation; 3) the 3D objects can be either open or closed meshes, and we can also deal with degenerate meshes; 4) the measure is insensitive to noise, stable under small topology errors, and robust against face deletion and mesh simplification. Moreover, a genetic algorithm (GA) can be applied to compute the approximate rectilinearity efficiently. We find that the calculation of rectilinearity can be used to normalize the pose of 3D meshes, and in many cases it performs better than the principal component analysis (PCA) based method. By applying a simple selection criterion, the combination of these two methods results in a new pose normalization algorithm which not only provides a higher successful alignment rate but also corresponds better with intuition. Finally, we carry out several experiments showing that both the rectilinearity based pose normalization preprocessing and the combined signatures, which consist of the rectilinearity measure and other shape descriptors, can significantly improve the performance of 3D shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ankerst, M., Kastenmuller, G., Kriegel, H., & Seidl, T. (1999). Nearest neighbor classification in 3D protein databases. In Proc. the seventh international conference on intelligent systems for molecular biology (pp. 34–43).

  • Bribiesca, E. (2008). An easy measure of compactness for 2D and 3D shapes. Pattern Recognition, 41(2), 543–554.

    Article  MATH  Google Scholar 

  • Bustos, B., Keim, D., Saupe, D., Schreck, T., & Vranić, D. (2005). An experimental effectiveness comparison of methods for 3D similarity search. International Journal on Digital Libraries 6(1), 39–54.

    Article  Google Scholar 

  • Chaouch, M., & Blondet, A. (2006). Enhanced 2D/3D approaches based on relevance index for 3D-shape retrieval. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 36–36).

  • Chaouch, M., & Blondet, A. (2007). A new descriptor for 2D depth image indexing and 3D model retrieval. In Proc. IEEE international conference on image processing (ICIP 2007) (Vol. 6, pp. 373–376).

  • Chaouch, M., & Blondet, A. (2008). A novel method for alignment of 3D models. In Proc. IEEE international conference on shape modeling and applications (SMI 2008) (pp. 187–195).

  • Chen, D. Y., Tian, X. P., Shen, Y. T., & Ouhyoung, M. (2003). On visual similarity based 3D model retrieval. In Proc. Eurographics 2003 (Vol. 22, pp. 223–232).

  • Corney, J., Rea, H., Clark, D., Pritchard, J., Breaks, M., & MacLeod, R. (2002). Coarse filters for shape matching. IEEE Computer Graphics and Applications, 22(3), 65–74.

    Article  Google Scholar 

  • Fink, E., & Wood, D. (1996). Fundamentals of restricted-orientation convexity. Information Sciences, 92(1), 175–196.

    Article  MATH  MathSciNet  Google Scholar 

  • Fu, H., Cohen-Or, D., Dror, G., & Sheffer, A. (2008). Upright orientation of man-made objects. In Proc. international conference on computer graphics and interactive techniques (ACM SIGGRAPH 2008).

  • Gal, R., Shamir, A., & Cohen-Or, D. (2007). Pose-oblivious shape signature. IEEE Transactions Visualization and Computer Graphics, 13(2), 261–271.

    Article  Google Scholar 

  • Haralick, R. M. (1974). A measure for circularity of digital figures. IEEE Trans. Systems, Man, and Cybernetics, 4, 394–396.

    MATH  Google Scholar 

  • Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Cambridge: MIT.

    Google Scholar 

  • Kazhdan, M. (2007). An approximate and efficient method for optimal rotation alignment of 3D models. IEEE Transactions Pattern Analysis and. Machine Intelligence, 29(7), 1221–1229.

    Article  Google Scholar 

  • Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., & Rusinkiewicz, S. (2003). A reflective symmetry descriptor for 3D models. Algorithmica, 38(1), 201–225.

    Article  MathSciNet  Google Scholar 

  • Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3D shape descriptors. In Proc. 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing (Vol. 43, pp. 156–164).

  • Krinidis, S., & Chatzis, V. (2008). Principal axes estimation using the vibration modes of physics-based deformable models. IEEE Trans. Image Processing, 17(6), 1007–1019.

    Article  MathSciNet  Google Scholar 

  • Laga, H., Takahashi, H., & Nakajima, M. (2006). Spherical wavelet descriptors for content-based 3D model retrieval. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 15–15).

  • Lee, C. H., Varshney, A., & Jacobs, D. W. (2005). Mesh saliency. ACM Transactions on Graphics (ACM SIGGRAPH 2005), 24(3), 659–666.

    Google Scholar 

  • Leou, J., & Tsai, W. (1987). Automatic rotational symmetry determination for shape analysis. Pattern Recognition, 20(6), 571–582.

    Article  Google Scholar 

  • Levin, D. T., Takarae, Y., Miner, A., & Keil, F. C. (2001). Efficient visual search by category: specifying the features that mark the difference between artifacts and animals in preattentive vision. Perception and Psychophysics, 63(4), 676–697.

    Google Scholar 

  • Lian, Z., Rosin, P. L., & Sun, X. (2008). A rectilinearity measurement for 3D meshes. In Proc. ACM international conference on multimedia information retrieval (MIR’08) (pp. 395–402).

  • Loncaric, S. (1998). A survey of shape analysis techniques. Pattern Recognition, 31(8), 983–1001.

    Article  Google Scholar 

  • MeshLab1.1.0 (2008). http://meshlab.sourceforge.net/.

  • Ohbuchi, R., & Hata, Y. (2006). Combining multiresolution shape descriptors for 3D model retrieval. In Proc. WSCG 2006.

  • Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832.

    Article  Google Scholar 

  • Paquet, E., & Rioux, M. (1999). Nefertiti: a query by content system for three-dimensional model and image databases management. Image and Vision Computing, 17(2), 157–166.

    Article  Google Scholar 

  • Paquet, E., Rioux, M., Murching, A., Naveen, T., & Tabatabai, A. (2000). Description of shape information for 2-D and 3-D objects. Signal Processing: Image Communication, 16(1–2), 103–122.

    Article  Google Scholar 

  • Petitjean, M. (2003). Chirality and symmetry measures: A transdisciplinary review. Entropy, 5, 271–312.

    Article  MATH  MathSciNet  Google Scholar 

  • Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., & Funkhouser, T. (2006). A planar-reflective symmetry transform for 3D shapes. ACM Transactions on Graphics (ACM SIGGRAPH 2006), 549–559.

  • Proffitt, D. (1982). The measurement of circularity and ellipticity on a digital grid. Pattern Recognition, 15(5), 383–387.

    Article  Google Scholar 

  • Rosin, P. L. (1999). Measuring rectangularity. Machine Vision and Applications, 11(4), 191–196.

    Article  MathSciNet  Google Scholar 

  • Rosin, P. L. (2003). Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications, 14(3), 172–184.

    Google Scholar 

  • Rosin, P. L. (2008). A two-component rectilinearity measure. Computer Vision and Image Understanding, 109(2), 176–185.

    Article  MathSciNet  Google Scholar 

  • Ruggeri, M. R., & Saupe, D. (2008, in press). Isometry-invariant matching of point set surfaces. In Proc. Eurographics workshop on 3D object retrieval.

  • Shih, J., Hsing, C., & Wang, J. (2007). A new 3D model retrieval approach based on the elevation descriptor. Pattern Recognition, 40(1), 283–295.

    Article  MATH  Google Scholar 

  • Shilane, P., & Funkhouser, T. (2007). Distinctive regions of 3D surfaces. ACM Transactions on Graphics, 26(2), 659–666.

    Article  Google Scholar 

  • Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The Princeton shape benchmark. In Proc. shape modeling applications (2004) (pp. 167–178).

  • SpharmonicKit2.7 (2004). http://www.cs.dartmouth.edu/~geelong/sphere/.

  • Sundar, H., Silver, D., Gavani, N., & Dickinson, S. (2003). Skeleton based shape matching and retrieval. In Proc. shape modeling international 2003 (SMI 2003) (pp. 130–139).

  • Tangelder, J. W., & Veltkamp, R. C. (2008). A survey of content based 3D shape retrieval methods. Multimedia Tools and Applications, 39(3), 441–471.

    Article  Google Scholar 

  • Tangelder, J. W. H., & Veltkamp, R. C. (2003). Polyhedral model retrieval using weighted point sets. In Proc. shape modeling international 2003 (SMI 2003) (pp. 119–129).

  • The Stanford 3D Scanning Repository (2008). http://graphics.stanford.edu/data/3dscanrep/.

  • Vazquez, P., Feixas, M., Sbert, M., & Heidrich, W. (2003). Automatic view selection using viewpoint entropy and its application to image-based modelling. Computer Graphics Forum, 22(4), 689–700.

    Article  Google Scholar 

  • Vranić, D. V. (2005). Desire: a composite 3D-shape descriptor. In Proc. IEEE international conference on multimedia and expo (ICME 2005).

  • Vranić, D. V., Saupe, D., & Richter, J. (2001). Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics. In Proc. 2001 IEEE fourth workshop on multimedia signal processing (pp. 293–298).

  • Yamauchi, H., Saleem, W., Yoshizawa, S., Karni, Z., Belyaev, A., & Seidel, H. P. (2006). Towards stable and salient multi-view representation of 3d shapes. In Proc. IEEE international conference on shape modeling and applications (SMI 2006) (pp. 40–40).

  • Yang, Y., Lin, H., & Zhang, Y. (2007). Content-based 3-D model retrieval: a survey. IEEE Trans. Systems, Man, and Cybernetics, 37(6), 1081–1098.

    Article  Google Scholar 

  • Zhang, C., & Chen, T. (2001a). Efficient feature extraction for 2D/3D objects in mesh representation. In Proc. international conference on image processing (ICIP 2001) (Vol. 3, pp. 935–938).

  • Zhang, C., & Chen, T. (2001b). Indexing and retrieval of 3D models aided by active learning. In Proc. the ninth ACM international conference on multimedia (pp. 615–616).

  • Zhang, D., & Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37(1), 1–19.

    Article  MATH  Google Scholar 

  • Žunić, J., & Rosin, P. L. (2003). Rectilinearity measurements for polygons. IEEE Transactions Pattern Analysis and Machine Intelligence, 25(9), 1193–1200.

    Article  Google Scholar 

  • Žunić, J., & Rosin, P. L. (2004). A new convexity measure for polygons. IEEE Transactions Pattern Analysis and Machine Intelligence, 26(7), 923–934.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouhui Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, Z., Rosin, P.L. & Sun, X. Rectilinearity of 3D Meshes. Int J Comput Vis 89, 130–151 (2010). https://doi.org/10.1007/s11263-009-0295-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0295-0

Keywords

Navigation