Skip to main content
Log in

Human Motion Tracking with a Kinematic Parameterization of Extremal Contours

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper addresses the problem of human motion tracking from multiple image sequences. The human body is described by five articulated mechanical chains and human body-parts are described by volumetric primitives with curved surfaces. If such a surface is observed with a camera, an extremal contour appears in the image whenever the surface turns smoothly away from the viewer. We describe a method that recovers human motion through a kinematic parameterization of these extremal contours. The method exploits the fact that the observed image motion of these contours is a function of both the rigid displacement of the surface and of the relative position and orientation between the viewer and the curved surface. First, we describe a parameterization of an extremal-contour point velocity for the case of developable surfaces. Second, we use the zero-reference kinematic representation and we derive an explicit formula that links extremal contour velocities to the angular velocities associated with the kinematic model. Third, we show how the chamfer-distance may be used to measure the discrepancy between predicted extremal contours and observed image contours; moreover we show how the chamfer distance can be used as a differentiable multi-valued function and how the tracker based on this distance can be cast into a continuous non-linear optimization framework. Fourth, we describe implementation issues associated with a practical human-body tracker that may use an arbitrary number of cameras. One great methodological and practical advantage of our method is that it relies neither on model-to-image, nor on image-to-image point matches. In practice we model people with 5 kinematic chains, 19 volumetric primitives, and 54 degrees of freedom; We observe silhouettes in images gathered with several synchronized and calibrated cameras. The tracker has been successfully applied to several complex motions gathered at 30 frames/second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, A., & Triggs, W. (2006). Recovering 3D human pose from monocular images. IEEE Transactions on Pattern Analysis & Machine Intelligence, 28(1), 44–58.

    Article  Google Scholar 

  • Balan, A. O., Sigal, L., & Black, M. J. (2005). A quantitative evaluation of video-based 3D person tracking. In PETS’05 (pp. 349–356).

  • Barrow, H. G., & Tenenbaum, J. M. (1981). Interpreting line drawings as three-dimensional surfaces. Artificial Intelligence, 17(1–3), 75–116.

    Article  Google Scholar 

  • Borgefors, G. (1986). Distance transformation in digital images. Computer Vision, Graphics, and Image Processing, 34(3), 344–371.

    Article  Google Scholar 

  • Bregler, C., Malik, J., & Pullen, K. (2004). Twist based acquisition and tracking of animal and human kinematics. International Journal of Computer Vision, 56(3), 179–194.

    Article  Google Scholar 

  • Cheung, K. M., Baker, S., & Kanade, T. (2005a). Shape-from-silhouette across time, part I: theory and algorithms. International Journal of Computer Vision, 62(3), 221–247.

    Article  Google Scholar 

  • Cheung, K. M., Baker, S., & Kanade, T. (2005b). Shape-from-silhouette across time, part II: applications to human modeling and markerless motion tracking. International Journal of Computer Vision, 63(3), 225–245.

    Article  Google Scholar 

  • David, P., DeMenthon, D. F., Duraiswami, R., & Samet, H. (2004). Softposit: simultaneous pose and correspondence determination. International Journal of Computer Vision, 59(3), 259–284.

    Article  Google Scholar 

  • Delamarre, Q., & Faugeras, O. (2001). 3D articulated models and multi-view tracking with physical forces. Computer Vision and Image Understanding, 81(3), 328–357.

    Article  MATH  Google Scholar 

  • Deutscher, J., Blake, A., & Reid, I. (2000). Articulated body motion capture by annealed particle filtering. In Computer vision and pattern recognition (pp. 2126–2133).

  • Do Carmo, M. P. (1976). Differential geometry of curves and surfaces. New York: Prentice-Hall.

    MATH  Google Scholar 

  • Drummond, T., & Cipolla, R. (2001). Real-time tracking of highly articulated structures in the presence of noisy measurements. In ICCV (pp. 315–320).

  • Felzenswalb, P., & Huttenlocher, D. (2005). Pictorial structures for object recognition. International Journal of Computer Vision, 61(1), 55–79.

    Article  Google Scholar 

  • Forsyth, D. A., & Ponce, J. (2003). Computer vision—a modern approach. New Jersey: Prentice Hall.

    Google Scholar 

  • Forsyth, D. A., Arikan, O., Ikemoto, L., O’Brien, J., & Ramanan, D. (2006). Computational studies of human motion, part 1: tracking and motion synthesis. Foundations and Trends in Computer Graphics and Vision, 1(2), 77–254.

    Article  Google Scholar 

  • Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611–631.

    Article  MATH  MathSciNet  Google Scholar 

  • Gavrila, D. M. (1999). The visual analysis of human movement: a survey. Computer Vision and Image Understanding, 73(1), 82–98.

    Article  MATH  Google Scholar 

  • Gavrila, D. M., & Davis, L. S. (1996). 3D model-based tracking of humans in action: a multi-view approach. In Conference on computer vision and pattern recognition (pp. 73–80), San Francisco, CA.

  • Gavrila, D. M., & Philomin, V. (1999). Real-time object detection for smart vehicles. In IEEE Proceedings of the seventh international conference on computer vision (pp. 87–93), Kerkyra, Greece.

  • Gleicher, G., & Ferrier, N. (2002). Evaluating video-based motion capture. In Proceedings of the computer animation 2002 (pp. 75–80), Geneva, Switzerland, June 2002.

  • Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9), 850–863.

    Article  Google Scholar 

  • Kakadiaris, I., & Metaxas, D. (2000). Model-based estimation of 3D human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(12), 1453–1459.

    Article  Google Scholar 

  • Kehl, R., & Van Gool, L. J. (2006). Markerless tracking of complex human motions from multiple views. Computer Vision and Image Understanding, 103(23), 190–209.

    Article  Google Scholar 

  • Knossow, D., Ronfard, R., Horaud, R., & Devernay, F. (2006). Tracking with the kinematics of extremal contours. In Lecture notes in computer science. Computer vision—ACCV 2006 (pp. 664–673), Hyderabad, India, January 2006. Berlin: Springer.

    Chapter  Google Scholar 

  • Koenderink, J. (1990). Solid shape. Cambridge: The MIT Press.

    Google Scholar 

  • Kreyzig, E. (1991). Differential geometry. New York: Dover. Reprint of a U. of Toronto 1963 edition.

    Google Scholar 

  • Martin, F., & Horaud, R. (2002). Multiple camera tracking of rigid objects. International Journal of Robotics Research, 21(2), 97–113.

    Article  Google Scholar 

  • McCarthy, J. M. (1990). Introduction to theoretical kinematics. Cambridge: MIT Press.

    Google Scholar 

  • Mikic, I., Trivedi, M. M., Hunter, E., & Cosman, P. C. (2003). Human body model acquisition and tracking using voxel data. International Journal of Computer Vision, 53(3), 199–223.

    Article  Google Scholar 

  • Moeslund, T. B., Hilton, A., & Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 104(2), 90–126.

    Article  Google Scholar 

  • Mooring, B. W., Roth, Z. S., & Driels, M. R. (1991). Fundamentals of manipulator calibration. New York: Wiley.

    Google Scholar 

  • Murray, R. M., Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic manipulation. Ann Arbor: CRC Press.

    MATH  Google Scholar 

  • Plaenkers, R., & Fua, P. (2003). Articulated soft objects for multi-view shape and motion capture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1182–1187.

    Article  Google Scholar 

  • Ronfard, R., Schmid, C., & Triggs, W. (2002). Learning to parse pictures of people. In Proceedings of the 7th European conference on computer vision (Vol. 4, pp. 700–714), Copenhagen, Denmark, June 2002. Berlin: Springer.

    Google Scholar 

  • Sigal, L., & Black, M. J. (2006). Humaneva: synchronized video and motion capture dataset for evaluation of articulated human motion (Technical Report CS-06-08). Department of Computer Science, Brown University, Providence, RI 02912, September 2006.

  • Sim, D. G., Kwon, O. K., & Park, R. H. (1999). Object matching algorithms using robust Hausdorff distance measures. IEEE Transactions on Image Processing, 8(3), 425–429.

    Article  Google Scholar 

  • Sminchisescu, C., & Triggs, W. (2003). Kinematic jump processes for monocular 3D human tracking. In International conference on computer vision and pattern recognition (Vol. I, pp. 69–76), June 2003.

  • Sminchisescu, C., & Triggs, W. (2005). Building roadmaps of minima and transitions in visual models. International Journal of Computer Vision, 61(1), 81–101.

    Article  Google Scholar 

  • Song, Y., Goncalves, L., & Perona, P. (2003). Unsupervised learning of human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 814–827.

    Article  Google Scholar 

  • Toyama, K., & Blake, A. (2002). Probabilistic tracking with exemplars in a metric space. International Journal of Computer Vision, 48(1), 9–19.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Horaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knossow, D., Ronfard, R. & Horaud, R. Human Motion Tracking with a Kinematic Parameterization of Extremal Contours. Int J Comput Vis 79, 247–269 (2008). https://doi.org/10.1007/s11263-007-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0116-2

Keywords

Navigation