Skip to main content
Log in

A Tensor Approximation Approach to Dimensionality Reduction

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Dimensionality reduction has recently been extensively studied for computer vision applications. We present a novel multilinear algebra based approach to reduced dimensionality representation of multidimensional data, such as image ensembles, video sequences and volume data. Before reducing the dimensionality we do not convert it into a vector as is done by traditional dimensionality reduction techniques like PCA. Our approach works directly on the multidimensional form of the data (matrix in 2D and tensor in higher dimensions) to yield what we call a Datum-as-Is representation. This helps exploit spatio-temporal redundancies with less information loss than image-as-vector methods. An efficient rank-R tensor approximation algorithm is presented to approximate higher-order tensors. We show that rank-R tensor approximation using Datum-as-Is representation generalizes many existing approaches that use image-as-matrix representation, such as generalized low rank approximation of matrices (GLRAM) (Ye, Y. in Mach. Learn. 61:167–191, 2005), rank-one decomposition of matrices (RODM) (Shashua, A., Levin, A. in CVPR’01: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition, p. 42, 2001) and rank-one decomposition of tensors (RODT) (Wang, H., Ahuja, N. in ICPR ’04: ICPR ’04: Proceedings of the 17th international conference on pattern recognition (ICPR’04), vol. 1, pp. 44–47, 2004). Our approach yields the most compact data representation among all known image-as-matrix methods. In addition, we propose another rank-R tensor approximation algorithm based on slice projection of third-order tensors, which needs fewer iterations for convergence for the important special case of 2D image ensembles, e.g., video. We evaluated the performance of our approach vs. other approaches on a number of datasets with the following two main results. First, for a fixed compression ratio, the proposed algorithm yields the best representation of image ensembles visually as well as in the least squares sense. Second, proposed representation gives the best performance for object classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H. (1989). Unsupervised learning. Neural Computation, 1, 295–311.

    Google Scholar 

  • Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287–314.

    Article  MATH  Google Scholar 

  • Hong, W., Wright, J., Huang, K., & Ma, Y. (2005). A multi-scale hybrid linear model for lossy image representation. In ICCV ’05: Proceedings of the tenth IEEE international conference on computer vision (Vol. 1, pp. 764–771).

  • Jutten, C., & Herault, J. (1991). Blind separation of sources, part 1: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24(1), 1–10.

    Article  MATH  Google Scholar 

  • Kofidis, E., & Regalia, P. A. (2002). On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM Journal on Matrix Analysis and Applications, 23(3), 863–884.

    Article  MATH  MathSciNet  Google Scholar 

  • Kroonenberg, P. (1983). Three-mode principal component analysis. Leiden: DSWO.

    Google Scholar 

  • Lathauwer, L., Moor, B. D., & Vandewalle, J. (2000). On the best rank-1 and rank-(R 1,R 2,…,R N ) approximation of high-order tensors. SIAM Journal on Matrix Analysis and Applications, 21(4), 1324–1342.

    Article  MATH  MathSciNet  Google Scholar 

  • Lathauwer, L., Moor, B. D., & Vandewalle, J. (2000). A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253–1278.

    Article  MATH  MathSciNet  Google Scholar 

  • Olshausen, B., & Field, D. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(13), 607–609.

    Article  Google Scholar 

  • Shashua, A., & Levin, A. (2001). Linear image coding for regression and classification using the tensor-rank principle. In CVPR’01: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition (p. 42).

  • Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of Optical Society of America, 4(3), 519–524.

    Article  Google Scholar 

  • Tenenbaum, J. B., & Freeman, W. T. (2000). Separating style and content with bilinear models. Neural Computation, 12(6), 1247–1283.

    Article  Google Scholar 

  • Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.

    Article  Google Scholar 

  • Vasilescu, M. A. O., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles: tensorfaces. In ECCV ’02: Proceedings of the 7th European conference on computer vision—part I (pp. 447–460).

  • Vasilescu, M. A. O., & Terzopoulos, D. (2003). Multilinear subspace analysis of image ensembles. In CVPR ’03: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (pp. 93–99).

  • Wang, H., & Ahuja, N. (2003). Facial expression decomposition. In ICCV ’03: Proceedings of the ninth IEEE international conference on computer vision (p. 958).

  • Wang, H., & Ahuja, N. (2004). Compact representation of multidimensional data using tensor rank-one decomposition. In ICPR ’04: Proceedings of the 17th international conference on pattern recognition (Vol. 1, pp. 44–47).

  • Wang, H., & Ahuja, N. (2005). Rank-R approximation of tensors: using image-as-matrix representation. In CVPR ’05: Proceedings of the 2005 IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 346–353).

  • Wang, H., Wu, Q., Shi, L., Yu, Y., & Ahuja, N. (2005). Out-of-core tensor approximation of multi-dimensional matrices of visual data. ACM Transactions on Graphics, 24(3), 527–535.

    Article  MATH  Google Scholar 

  • Xu, D., Yan, S., Zhang, L., Zhang, H.-J., Liu, Z., & Shum, H.-Y. (2005). Concurrent subspaces analysis. In IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 2, pp. 203–208).

  • Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004). Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1), 131–137.

    Article  Google Scholar 

  • Ye, J. (2005). Generalized low rank approximations of matrices. Machine Learning, 61, 167–191.

    Article  MATH  Google Scholar 

  • Ye, J., Janardan, R., & Li, Q. (2004). GPCA: an efficient dimension reduction scheme for image compression and retrieval. In KDD ’04: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 354–363), New York, NY, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcheng Wang.

Additional information

A shorter version of this paper was published at IEEE CVPR 2005 (Wang and Ahuja 2005).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ahuja, N. A Tensor Approximation Approach to Dimensionality Reduction. Int J Comput Vis 76, 217–229 (2008). https://doi.org/10.1007/s11263-007-0053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-007-0053-0

Keywords

Navigation