Skip to main content
Log in

An Explanation for the Logarithmic Connection between Linear and Morphological System Theory

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Dorst/van den Boomgaard and Maragos introduced the slope transform as the morphological equivalent of the Fourier transform. Generalising the conjugacy operation from convex analysis it formed the basis of a morphological system theory that bears an almost logarithmic relation to linear system theory; a connection that has not been fully understood so far. Our article provides an explanation by disclosing that morphology in essence is linear system theory in specific algebras. While linear system theory uses the standard plus-prod algebra, morphological system theory is based on the max-plus algebra and the min-plus algebra. We identify the nonlinear operations of erosion and dilation as linear convolutions in the latter algebras. The logarithmic Laplace transform makes a natural appearance as it corresponds to the conjugacy operation in the max-plus algebra. Its conjugate is given by the so-called Cramer transform. Originating from stochastics, the Cramer transform maps Gaussians to quadratic functions and relates standard convolution to erosion. This fundamental transform relies on the logarithm and constitutes the direct link between linear and morphological system theory. Many numerical examples are presented that illustrate the convexifying and smoothing properties of the Cramer transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akian, M., Quadrat, J.-P., and Viot, M. 1994. Bellman processes. In ICAOS ′94: Discrete Event Systems, volume 199 of Lecture Notes in Control and Information Sciences, Springer, London, pp. 302–311.

    Google Scholar 

  • Alvarez, L., Guichard, F., Lions, P.-L., and Morel, J.-M. 1993. Axioms and fundamental equations in image processing. Archive for Rational Mechanics and Analysis, 123:199–257.

    Article  Google Scholar 

  • Azencott, R., Guivarc’h, Y., Gundy, R.F., and Hennequin, P.L. 1980. (eds.) Ecole d’Ete de Probalites de Saint-Flour VIII-1978, volume 774 of Lecture Notes in Mathematics. Springer: Berlin.

  • Baccelli, F., Cohen, G., Olsder, G.J., and Quadrat, J.-P. 1992. Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester, www-rocq.inria.fr/scilab/cohen/SED/SED1-book.html

  • Bauer, H. 1990. Maß-und Integrationstheorie. Walter de Gruyter, Berlin.

    Google Scholar 

  • Borwein, J.M. and Lewis, A.S. 1999. Convex Analysis and Nonlinear Optimization. Springer: New York.

    Google Scholar 

  • Burgeth, B. and Weickert, J. 2003. An explanation for the logarithmic connection between linear and morphological systems. In L.D. Griffin and M. Lillholm, (Eds.), Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, Springer, Berlin, pp. 325–339.

    Google Scholar 

  • Castleman, K.R. 1996. Digital Image Processing. Prentice Hall: Englewood Cliffs.

    Google Scholar 

  • Deuschel, J.-D. and Stroock, D.W. 1989. Large Deviations. Academic Press: Boston.

    Google Scholar 

  • Dorst, L. and van den Boomgaard, R. 1994. Morphological signal processing and the slope transform. Signal Processing, 38:79–98.

    Article  Google Scholar 

  • Ellis, R.S. 1985. Entropy, Large Deviations, and Statistical Mechanics, volume 271 of Grundlehren der Mathematischen Wissenschaften. Springer: New York.

    Google Scholar 

  • Florack, L. 1997. Image Structure, volume 10 of Computational Imaging and Vision. Kluwer: Dordrecht.

    Google Scholar 

  • Florack, L. 2001. Non-linear scale-spaces isomorphic to the linear case with applications to scalar, vector and multispectral images. Journal of Mathematical Imaging and Vision, 15(1/2):39–53, 2001. Also: International Journal of Computer Vision, 42(1/2):39–53, 2001.

    Google Scholar 

  • Florack, L.M.J., Maas, R., and Niessen, W.J. 1999. Pseudo-linear scale-space theory. International Journal of Computer Vision, 31(2/3):247–259.

    Article  Google Scholar 

  • Gonzalez, R.C. and Woods, R.E. 2002. Digital Image Processing. 2nd edition. Addison–Wesley, Reading.

    Google Scholar 

  • Hamming, R.W. 1998. Digital Filters. Dover: New York.

    Google Scholar 

  • Heijmans, H.J.A.M. 1994. Morphological Image Operators. Academic Press: Boston.

    Google Scholar 

  • Heijmans, H.J.A.M. 2001. Scale-spaces, PDEs and scale-invariance. In M. Kerckhove, editor, Scale-Space and Morphology in Computer Vision, volume 2106 of Lecture Notes in Computer Science, Springer: Berlin, pp. 215–226.

    Google Scholar 

  • Heijmans, H.J.A.M. and van den Boomgaard, R. 2001. Algebraic framework for linear and morphological scale-spaces. Journal of Visual Communication and Image Representation, 13(1/2):269–301.

    Article  Google Scholar 

  • Hiriart-Urruty, J.-B. and Lemarechal, C. 2001. Fundamentals of Convex Analysis.Springer: Heidelberg.

    Google Scholar 

  • Iijima, T. 1959. Basic theory of pattern observation. In Papers of Technical Group on Automata and Automatic Control. December. IECE, Japan In, Japanese.

  • Iijima, T. 1973. Pattern Recognition. Corona Publishing, Tokyo, In Japanese.

    Google Scholar 

  • Jackway, P.T. 1996. Gradient watersheds in morphological scale-space. IEEE Transactions on Image Processing, 5:913–921.

    Article  Google Scholar 

  • Jackway, P.T. and Deriche, M. 1996. Scale-space properties of the multiscale morphological dilation–erosion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18:38–51.

    Article  Google Scholar 

  • Lindeberg, T. 1994. Scale-Space Theory in Computer Vision. Kluwer: Boston.

    Google Scholar 

  • Maragos, P. 1994. Morphological systems: Slope transforms and max-min difference and differential equations.Signal Processing, 38(1):57–77.

    Article  Google Scholar 

  • Maragos, P. 1996. Differential morphology and image processing. IEEE Transactions on Image Processing, 5(6):922–937.

    Article  Google Scholar 

  • Maragos, P. and Schafer, R.W. 1990. Morphological systems for multidimensional signal processing. Proceedings of the IEEE, 78(4):690–710.

    Google Scholar 

  • Oberhettinger, F. and Badii, L. 1973. Tables of Laplace Transforms. Springer: Berlin.

    Google Scholar 

  • Oppenheim, A.V. Schafer, R.W., and Buck, J.R. 1999. Discrete-Time Signal Processing. 2nd edition, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Rockafellar, R.T. 1970. Convex Analysis. Princeton University Press: Princeton.

    Google Scholar 

  • Schavemaker, J.G.M., Reinders, M.J.T., Gerbrands, J.J., and Backer, E. 2000. Image sharpening by morphological filtering. Pattern Recognition, 33:997–1012.

    Article  Google Scholar 

  • Serra, J. 1982. Image Analysis and Mathematical Morphology, volume 1. Academic Press: London.

    Google Scholar 

  • Serra, J. 1988. Image Analysis and Mathematical Morphology, volume 2. Academic Press: London.

    Google Scholar 

  • Soille, P. 1999. Morphological Image Analysis. Springer: Berlin.

    Google Scholar 

  • Sporring, J., Nielsen, M., Florack, L., and Johansen, P. 1997. (Eds.) Gaussian Scale-Space Theory, volume 8 of Computational Imaging and Vision. Kluwer: Dordrecht.

  • van den Boomgaard, R. 1992. The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde, 10(3):219–236.

    Google Scholar 

  • Weickert, J., Ishikawa, S., and Imiya, A. 1999. Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3):237–252.

    Article  Google Scholar 

  • Welk, M. 2003. Families of generalised morphological scale spaces. In L.D. Griffin and M. Lillholm, editors, Scale Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, Springer: Berlin, pp. 770–784.

    Google Scholar 

  • Witkin, A.P. 1983. Scale-space filtering. In Proc. Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, August volume 2, pp. 945–951.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Burgeth.

Additional information

First online version published in June, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgeth, B., Weickert, J. An Explanation for the Logarithmic Connection between Linear and Morphological System Theory. Int J Comput Vision 64, 157–169 (2005). https://doi.org/10.1007/s11263-005-1841-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-1841-z

Keywords

Navigation