Skip to main content
Log in

Deletion of the us7 and us8 genes of pseudorabies virus exerts a differential effect on the expression of early and late viral genes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The pseudorabies virus (PRV; also known as Suid herpesvirus-1) is a neurotropic herpesvirus of swine. The us7 and us8 genes of this virus encode the glycoprotein I and E membrane proteins that form a heterodimer that is known to control cell-to-cell spread in tissue culture and in animals. In this study, we investigated the effect of the deletion of the PRV us7 and us8 genes on the genome-wide transcription and DNA replication using a multi-time-point quantitative reverse transcriptase-based real-time PCR technique. Abrogation of the us7/8 gene function was found to exert a drastic but differential effect on the expression of PRV genes during lytic infection. In the mutant virus, all kinetic classes of viral genes were significantly down-regulated at the first 6 h of infection, while having been upregulated later. The level of upregulation was the highest in the immediate-early (IE) and the early (E) genes; lower in the early-late (E/L) genes; and the lowest in the late (L) genes. The relative contribution of the L transcripts to the global transcriptome became lower, while the rest of the transcripts were expressed at a higher level in the mutant than in the wild-type virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Aujeszky, Veterinarius 25, 387–396 (1902)

    Google Scholar 

  2. P. Oláh, D. Tombácz, N. Póka, Z. Csabai, I. Prazsák, Z. Boldogkői, BMC Microbiol. (2015). doi:10.1186/s12866-015-0470-0

    PubMed  PubMed Central  Google Scholar 

  3. D. Tombácz, Z. Csabai, P. Oláh, Z. Balázs, I. Likó, L. Zsigmond, D. Sharon, M. Snyder, Z. Boldogkoi, PLoS ONE (2016). doi:10.1371/journal.pone.0162868

    PubMed  PubMed Central  Google Scholar 

  4. R.S. Tirabassi, R.A. Townley, M.G. Eldridge, L.W. Enquist, J. Virol. 71(9), 6455–6464 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. R.S. Tirabassi, L.W. Enquist, J. Virol. 72(6), 4571–4579 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. K.S. Dingwell, C.R. Brunetti, R.L. Hendricks, Q. Tang, M. Tang, A.J. Rainbow, D.C. Johnson, J. Virol. 68(2), 834–845 (1994)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. E. Maidji, S. Tugizov, T. Jones, Z. Zhenwei, L. Pereira, J. Virol. 70, 8402–8410 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. W. Mulder, J. Pol, T. Kimman, G. Kok, J. Priem, B. Peeters, J. Virol. 70, 2191–2200 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Knapp, P.J. Husak, L.W. Enquist, J. Virol. 71(8), 5820–5827 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. D.C. Johnson, M. Webb, T.W. Wisner, J. Virol. 75(2), 821–833 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. L.W. Enquist, Semin. Virol. 5, 221–231 (1994)

    Article  Google Scholar 

  12. T.H. Chang, L.W. Enquist, J. Virol. 79(17), 10875–10889 (2005)

    Article  Google Scholar 

  13. N. Babic, T.C. Mettenleiter, G. Ugolini, A. Flamand, P. Coulon, Virology 204, 616–625 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. S.K. Kritas, M.B. Pensaert, T.C. Mettenleiter, Vet. Microbiol. 40, 323–334 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. R. Kratchmarov, T. Kramer, T.M. Greco, M.P. Taylor, T.H. Ch’ng, I.M. Cristea, L.W. Enquist, J. Virol. 87(17), 9431–9440 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. P.W. Howard, T.L. Howard, D.C. Johnson, J. Virol. 87(1), 403–414 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Snyder, K. Polcicova, D.C. Johnson, J. Virol. 82(21), 10613–10624 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. R. Brack, B.G. Klupp, H. Granzow, R. Tirabassi, L.W. Enquist, T.C. Mettenleiter, J. Virol. 74(9), 4004–4016 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. L. Jacobs, Arch. Virol. 137, 209–228 (1994)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Gu, J. Dong, J. Wang, C. Hou, H. Sun, W. Yang, J. Bai, P. Jiang, Virus Res. (2014). doi:10.1016/j.virusres

    PubMed Central  Google Scholar 

  21. C.Y. Wu, C.M. Liao, J.N. Chi, M.S. Chien, C. Huang, J. Biotechnol. (2016). doi:10.1016/j.jbiotec.2016.05.009

    PubMed Central  Google Scholar 

  22. J.P. Card, L.W. Enquist, Curr. Protoc. Neurosci. (2014). doi:10.1002/0471142301.ns0105s68

    PubMed  PubMed Central  Google Scholar 

  23. M.I. Ekstrand, L.W. Enquist, L.E. Pomeranz, Trends Mol. Med. 14(3), 134–140 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Z. Boldogkoi, K. Balint, G.B. Awatramani, D. Balya, V. Busskamp, T.J. Viney, P.S. Lagali, J. Duebel, E. Pásti, D. Tombácz, J.S. Tóth, I.F. Takács, B.G. Scherf, B. Roska, Nat. Methods (2009). doi:10.1038/nmeth.1292

    PubMed  Google Scholar 

  25. D. Tombácz, J.S. Tóth, P. Petrovszki, Z. Boldogkoi, BMC Genomics (2009). doi:10.1186/1471-2164-10-491

    PubMed  PubMed Central  Google Scholar 

  26. J.S. Tóth, D. Tombácz, I.F. Takács, Z. Boldogkoi, BMC Microbiol. (2010). doi:10.1186/1471-2180-10-311

    PubMed  PubMed Central  Google Scholar 

  27. D. Tombácz, J.S. Tóth, Z. Boldogkoi, Genomics (2011). doi:10.1016/j.ygeno.2011.03.007

    PubMed  Google Scholar 

  28. D. Tombácz, J.S. Tóth, Z. Boldogkoi, Gene (2012). doi:10.1016/j.gene.2011.11.049

    Google Scholar 

  29. I.F. Takács, D. Tombácz, B. Berta, I. Prazsák, N. Póka, Z. Boldogkői, BMC Mol. Biol. (2013). doi:10.1186/1471-2199-14-2

    PubMed  PubMed Central  Google Scholar 

  30. P. Mestdagh, P. Van Vlierberghe, A. De Weer, D. Muth, F. Westermann, F. Speleman, J. Vandesompele, Genome Biol. (2009). doi:10.1186/gb-2009-10-6-r64

    PubMed  PubMed Central  Google Scholar 

  31. A.M. Campbell, L.J. Heyer, in Discovering Genomics Proteomics and Bioinformatics, ed. by S. Winslow (CSHL Press, San Francisco, 2007), pp. 238–241

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Swiss-Hungarian Cooperation Programme, Grant No.: SH/7/2/8 to ZB and by the Bolyai János Scholarship of the Hungarian Academy of Sciences: 2015-18 to DT.

Author contributions

NP took part in PK-cell propagation, reverse transcription, and quantitative real-time PCR reactions, as well as data analysis. ZC performed reverse transcription and quantitative real-time PCR reactions. EP prepared the targeting plasmid. DT performed data analysis, drafted the manuscript, performed reverse transcription reactions and qPCR experiments. ZB coordinated the study, propagated viruses, generated the recombinant PRV, drafted and corrected the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Boldogkői.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Edited by William Dundon.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Póka, N., Csabai, Z., Pásti, E. et al. Deletion of the us7 and us8 genes of pseudorabies virus exerts a differential effect on the expression of early and late viral genes. Virus Genes 53, 603–612 (2017). https://doi.org/10.1007/s11262-017-1465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-017-1465-8

Keywords

Navigation