Skip to main content
Log in

Comparative genomic analysis of three white spot syndrome virus isolates of different virulence

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Three white spot syndrome virus (WSSV) isolates of different virulence were identified in our previous study, the high-virulent strain WSSV-CN01, the moderate-virulent strain WSSV-CN02 and the low-virulent strain WSSV-CN03. In this study, the genomes of these three WSSV isolates were sequenced, annotated and compared. The genome sizes for WSSV-CN01, WSSV-CN02, and WSSV-CN03 are 309,286, 294,261, and 284,148 bp, bearing 177, 164, and 154 putative protein-coding genes, respectively. The genomic variations including insertions, deletions, and substitutions were investigated. Thirty four genes show >20% variation in their sequences in WSSV-CN02 or WSSV-CN03, in comparison with WSSV-CN01, including six envelope protein genes (wsv237/vp41A, wsv238/vp52A, wsv338/vp62, wsv339/vp39, wsv077/vp36A, and wsv242/vp41B), and two immediate-early genes (wsv108 and wsv178). The genomic variations among WSSV isolates of different virulence, especially those in the coding regions, certainly provide new insight into the understanding of the molecular basis of WSSV pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sanchez-Paz, Vet. Res. 41(6), 43 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  2. J.H. Leu, F. Yang, X. Zhang, X. Xu, G.H. Kou, C.F. Lo, Curr. Top. Microbiol. Immunol. 328, 197–227 (2009)

    CAS  PubMed  Google Scholar 

  3. C.M. Escobedo-Bonilla, V. Alday-Sanz, M. Wille, P. Sorgeloos, M.B. Pensaert, H.J. Nauwynck, J. Fish Dis. 31(1), 1–18 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. F. Yang, J. He, X. Lin, Q. Li, D. Pan, X. Zhang, X. Xu, J. Virol. 75(23), 11811–11820 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M.C.W. van Hulten, J. Witteveldt, S. Peters, N. Kloosterboer, R. Tarchini, M. Fiers, H. Sandbrink, R.K. Lankhorst, J.M. Vlak, Virology 286(1), 7–22 (2001)

    Article  PubMed  Google Scholar 

  6. L.-L. Chen, H.-C. Wang, C.-J. Huang, S.-E. Peng, Y.-G. Chen, S.-J. Lin, W.-Y. Chen, C.-F. Dai, H.-T. Yu, C.-H. Wang, C.-F. Lo, G.-H. Kou, Virology 301(1), 136–147 (2002)

    Article  CAS  PubMed  Google Scholar 

  7. C.Y. Chai, J. Yoon, Y.S. Lee, Y.B. Kim, T.J. Choi, J. Microbiol. 51(5), 695–699 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. H. Marks, R.W. Goldbach, J.M. Vlak, M.C. van Hulten, Arch. Virol. 149(4), 673–697 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. H. Marks, J.J.A. van Duijse, D. Zuidema, M.C.W. van Hulten, J.M. Vlak, Virus Res. 110(1–2), 9–20 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. B.T. Dieu, H. Marks, M.P. Zwart, J.M. Vlak, J. Gen. Virol. 91(Pt 5), 1164–1172 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. M. de Jesus Duran-Avelar, R. Perez-Enriquez, J.F. Zambrano-Zaragoza, L. Montoya-Rodriguez, R. Vazquez-Juarez, N. Vibanco-Perez, Dis. Aquat. Organ. 114(1), 11–20 (2015)

    Article  PubMed  Google Scholar 

  12. G. Sablok, A. Sanchez-Paz, X. Wu, J. Ranjan, J. Kuo, I. Bulla, Arch. Virol. 157(12), 2357–2362 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. M. Gao, F. Li, L. Xu, X. Zhu, Fish Shellfish Immunol. 39(1), 17–23 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. B. Pradeep, I. Karunasagar, I. Karunasagar, J. Fish Dis. 32(9), 801–805 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. S.E. Laramore, J. Scarpa, C.R. Laramore, J. Lin, J. Aquat. Anim. Health 21(2), 82–90 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. M.M. Rahman, M. Corteel, C.M. Escobedo-Bonilla, M. Wille, V. Alday-Sanz, M.B. Pensaert, P. Sorgeloos, H.J. Nauwynck, Dis. Aquat. Organ. 79(3), 191–198 (2008)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Lan, W. Lu, X. Xu, Virus Res. 90(1–2), 269–274 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. T.T. Hoa, M.P. Zwart, N.T. Phuong, M.C. de Jong, J.M. Vlak, J. Fish Dis. 35(11), 817–826 (2012)

    CAS  PubMed  Google Scholar 

  19. G. Waikhom, K.R. John, M.R. George, M.J.P. Jeyaseelan, Aquaculture 261(1), 54–63 (2006)

    Article  Google Scholar 

  20. X. Xie, H. Li, L. Xu, F. Yang, Virus Res. 108(1–2), 63–67 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Q. Zhou, Y.P. Qi, F. Yang, J. Virol. Methods 146(1–2), 288–292 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. F. Yang, W. Wang, R.Z. Chen, X. Xu, J. Virol. Methods 67(1), 1–4 (1997)

    Article  CAS  PubMed  Google Scholar 

  23. A.C. Darling, B. Mau, F.R. Blattner, N.T. Perna, Genome Res. 14(7), 1394–1403 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. D. Thompson, T. J. Gibson, D. G. Higgins, Curr Protoc Bioinformatics. Chapter 2, Unit 2 3(2002)

  25. S. Guindon, O. Gascuel, Syst. Biol. 52(5), 696–704 (2003)

    Article  PubMed  Google Scholar 

  26. K. Tamura, M. Nei, Mol. Biol. Evol. 10(3), 512–526 (1993)

    CAS  PubMed  Google Scholar 

  27. C. Feschotte, N. Jiang, S.R. Wessler, Nat. Rev. Genet. 3(5), 329–341 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. X. Xie, L. Xu, F. Yang, J. Virol. 80(21), 10615–10623 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.M. Tsai, H.C. Wang, J.H. Leu, A.H. Wang, Y. Zhuang, P.J. Walker, G.H. Kou, C.F. Lo, J. Virol. 80(6), 3021–3029 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Y. Liu, J. Wu, H. Chen, C.L. Hew, J. Yan, Virology 408(2), 197–203 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. M.P. Zwart, B.T. Dieu, L. Hemerik, J.M. Vlak, PLoS ONE 5(10), e13400 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Z. Li, Q. Lin, J. Chen, J.L. Wu, T.K. Lim, S.S. Loh, X. Tang, C.L. Hew, Mol. Cell. Proteom. 6(9), 1609–1620 (2007)

    Article  CAS  Google Scholar 

  33. E. Baranowski, C.M. Ruiz-Jarabo, E. Domingo, Science 292(5519), 1102–1105 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. L. de Borba, D.M. Strottmann, L. de Noronha, P.W. Mason, C.N. Dos Santos, PLoS Negl. Trop. Dis. 6(4), e1624 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  35. G. Schlecht-Louf, M. Renard, M. Mangeney, C. Letzelter, A. Richaud, B. Ducos, I. Bouallaga, T. Heidmann, Proc. Natl. Acad. Sci. USA 107(8), 3782–3787 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Zuo, C. Chen, Y. Gao, J. Lin, C. Jin, W. Wang, Fish Shellfish Immunol. 30, 1188–1191 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. L. Wang, B. Zhi, W.L. Wu, X.B. Zhang, Dev. Comp. Immunol. 32(6), 706–715 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. F. Li, M. Li, W. Ke, Y. Ji, X. Bian, X. Yan, Virology 385(1), 267–274 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. T.E. Morrison, A. Mauser, A. Klingelhutz, S.C. Kenney, J. Virol. 78(1), 544–549 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Yuan, Methods Mol. Biol. 292, 231–244 (2005)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiaofeng Shi for assistance in phylogenetic analysis, Dr. Mingliang Chen and Zhenping Zhong for proof-reading of the manuscript. This work was supported by the National Basic Research Program of China (973 Program, Grant Number 2012CB114401), the Natural Science Foundation of China (Grant Numbers 41376173 and 41276176), the China Agriculture Research System (Grant Number CARS-47), and the Fujian Marine Hi-tech Industry Program (Grant Number 2014-05).

Author contributions

FL and FY conceived and designed the experiments; MG performed the RT-PCR and Western blotting experiment; FL, MG, and FY participated in analyzing and interpretation of the genomic sequencing data; LX performed the virus purification, DNA extraction experiment, and PCR confirmation of the genomic variation. FL, MG, and FY drafted the manuscript. All authors read and approved the final manuscript. FL and MG contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This research did not involve Human Participants or Animals.

Informed consent

This research did not involve Human Participants therefore no informed consent is required.

Additional information

Edited by A. Lorena Passarelli.

Fang Li and Meiling Gao have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Schematic diagram showing the organization of the circular genome of WSSV-CN01. Schematic diagram showing the organization of the circular genome of WSSV-CN01. Positions of the predicted protein coding genes and their transcription directions are indicated with arrows (PDF 705 kb)

Supplementary Fig. 2

Schematic diagram showing the organization of the circular genome of WSSV-CN02. Schematic diagram showing the organization of the circular genome of WSSV-CN02. Positions of the predicted protein coding genes and their transcription directions are indicated with arrows (PDF 666 kb)

Supplementary Fig. 3

Schematic diagram showing the organization of the circular genome of WSSV-CN03. Schematic diagram showing the organization of the circular genome of WSSV-CN03. Positions of the predicted protein coding genes and their transcription directions are indicated with arrows (PDF 650 kb)

Supplementary Fig. 4

The graphic result of the whole-genome alignment of WSSV-CN, -CN02, CN02, and CN03. The genomic sequences of WSSV-CN, -CN02, CN02, and CN03 were aligned with the “align whole genomes” function of MAUVE. Homologous blocks are shown as identically colored regions. ORFs transcribed forward (above) and reverse (below) are indicated (PDF 702 kb)

Supplementary Table 1

Primers used to analyze large-scaled genomic variations of different WSSV strains (PDF 12 kb)

Supplementary Table 2

Primers used for RT-PCR analysis (PDF 13 kb)

Supplementary Table 3

Comparison of protein coding genes of WSSV-CN, -CN01, -CN02 and -CN03 (PDF 168 kb)

Supplementary Table 4

The number of indels and SNPs in the genomes of WSSV-CN01, -CN02 and –CN03 in comparison with WSSV-CN (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Gao, M., Xu, L. et al. Comparative genomic analysis of three white spot syndrome virus isolates of different virulence. Virus Genes 53, 249–258 (2017). https://doi.org/10.1007/s11262-016-1421-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-016-1421-z

Keywords

Navigation