Skip to main content
Log in

Studies on differential behavior of cassava mosaic geminivirus DNA components, symptom recovery patterns, and their siRNA profiles

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Cassava mosaic disease caused by cassava mosaic geminiviruses (CMGs) with bipartite genome organization is a major constraint for production of cassava in the African continent and the Indian sub-continent. Currently, there are eleven recognized species of CMGs, and several diverse isolates represent them, with vast amount of sequence variability, reflecting into diversity of symptom severity/phenotypes. Here, we make a systematic effort to study the infection dynamics of several species of CMGs and their isolates. Further, we try to identify the genomic component of CMGs contributing to the manifestation of diverse patterns of symptoms and the molecular basis for the differential behavior of CMGs. The pseudo-recombination studies carried out by swapping of DNA-A and DNA-B components of the CMGs revealed that the DNA-B component significantly contributes to the symptom severity. Past studies had shown that the DNA-A component of Sri Lankan cassava mosaic virus shows monopartite feature. Thus, the ability of DNA-A component alone, to replicate and move systemically in the host plant with inherent monopartite features was investigated for all the CMGs. Geminiviruses are known to trigger gene silencing and are also its target, resulting in recovery of the host plant from viral infection. In the collection of several different CMG species and isolates we had, there was a vast variability in their recovery and non-recovery phenotypes. To understand the molecular basis of this, the origin and distribution of virus-derived small interfering RNAs were mapped across their genome and across the CMG-infected symptomatic Nicotiana benthamiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.M. Fauquet, R.W. Briddon, J.K. Brown, E. Moriones, J. Stanley, M. Zerbini, X. Zhou, Arch. Virol. 153, 783–821 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. B.L. Patil, C.M. Fauquet, Mol. Plant Pathol. 10, 685–701 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. B.L. Patil, S. Rajasubramaniam, C. Bagchi, I. Dasgupta, Arch. Virol. 150, 389–397 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. H. Jeske, Curr. Top. Microbiol. Immunol. 331, 185–226 (2009)

    CAS  PubMed  Google Scholar 

  5. J.P. Legg, P. Lava Kumar, T. Makeshkumar, L. Tripathi, M. Ferguson, E. Kanju, P. Ntawuruhunga, W. Cuellar, Adv. Virus Res. 91, 85–142 (2015)

    PubMed  Google Scholar 

  6. S.E. Bull, R.W. Briddon, W.S. Sserubombwe, K. Ngugi, P.G. Markham, J. Stanley, J. Gen. Virol. 87, 3053–3065 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. E. van der Walt, E.P. Rybicki, A. Varsani, J.E. Polston, R. Billharz, L. Donaldson, A.L. Monjane, D.P. Martin, J. Gen. Virol. 90, 734 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  8. J. Pita, V.N. Fondong, A. Sangaré, G.W. Otim-Nape, S. Ogwal, C.M. Fauquet, J. Gen. Virol. 82, 655–665 (2001)

    CAS  PubMed  Google Scholar 

  9. X. Zhou, Y. Liu, L. Calvert, C. Munoz, G.W. Otim-Nape, D.J. Robinson, B.D. Harrison, Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78, 2101–2111 (1997)

    CAS  PubMed  Google Scholar 

  10. R.W. Briddon, B.L. Patil, B.B. Bagewadi, M.S. Nawaz-ul-Rehman, C.M. Fauquet, BMC Evol. Biol. 10, 97 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  11. K. Saunders, N. Salim, V.R. Mali, V.G. Malathi, R. Briddon, P.G. Markham, J. Stanley, Virology 293, 63–74 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. F.A. Klinkenberg, J. Stanley, J. Gen. Virol. 71, 1409–1412 (1990)

    Article  CAS  Google Scholar 

  13. D.M. Bisaro, Virology 344, 158–168 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. R. Vanitharani, P. Chellappan, C.M. Fauquet, Trends Plant Sci. 10, 144–151 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. O. Voinnet, Y.M. Pinto, D.C. Baulcombe, Proc. Natl. Acad. Sci. U.S.A. 96, 14147–14152 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. P. Chellappan, R. Vanitharani, C.M. Fauquet, J. Virol. 78, 7465–7477 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. S.E. Bull, R.W. Briddon, W.S. Sserubombwe, K. Ngugi, P.G. Markham, J. Stanley, J. Gen. Virol. 88, 1624–1633 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. O.A. Ariyo, G.I. Atiri, A.G. Dixon, S. Winter, J. Virol. Methods 137, 43–50 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. V.N. Fondong, J.S. Pita, M.E. Rey, A. de Kochko, R.N. Beachy, C.M. Fauquet, J. Gen. Virol. 81, 287–297 (2000)

    CAS  PubMed  Google Scholar 

  20. B.L. Patil, C.M. Fauquet, J. Gen. Virol. 91, 1871–1882 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. F.A. Klinkenberg, S. Ellwood, J. Stanley, J. Gen. Virol. 70, 1837–1844 (1989)

    Article  CAS  Google Scholar 

  22. L.C. Berrie, K.E. Palmer, E.P. Rybicki, M.E.C. Rey, Arch. Virol. 143, 2253–2260 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. B.L. Patil, C.M. Fauquet, Mol. Plant Pathol. (2015). doi:10.1111/mpp.12205

    Google Scholar 

  24. B.L. Patil, E. Ogwok, H. Wagaba, I.U. Mohammed, J.S. Yadav, B. Bagewadi, N.J. Taylor, T. Alicai, J.F. Kreuze, M.N. Gowda, C.M. Fauquet, Mol. Plant. Pathol. 12, 31–41 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. P. Chellappan, R. Vanitharani, F. Ogbe, C.M. Fauquet, Plant Physiol. 138, 1828–1841 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. T.R. Resmi, S. Nivedhitha, C. Karthikeyan, K. Veluthambi, FEMS Microbiol. Lett. 360, 42–50 (2014)

    Article  CAS  PubMed  Google Scholar 

  27. J. Legg, C.M. Fauquet, Plant Mol. Biol. 56, 585–599 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. D. Evans, H. Jeske, Virology 194, 752–757 (1993)

    Article  CAS  PubMed  Google Scholar 

  29. J. Stanley, P.G. Markham, R.J. Callis, M.S. Pinner, EMBO J. 5, 1761–1767 (1986)

    PubMed Central  CAS  PubMed  Google Scholar 

  30. S. Mansoor, R.W. Briddon, Y. Zafar, J. Stanley, Trends Plant Sci. 8, 128–134 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. S. Chakraborty, R. Vanitharani, B. Chattopadhyay, C.M. Fauquet, J. Gen. Virol. 89, 818–828 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. A.V. Arnim, J. Stanley, Determinants of tomato golden mosaic virus symptom development located on DNA B. Virology 186, 286–293 (1992)

    Article  Google Scholar 

  33. A.S. Karthikeyan, R. Vanitharani, V. Balaji, S. Anuradha, P. Thillaichidambaram, P.V. Shivaprasad, C. Parameswari, V. Balamani, M. Saminathan, K. Veluthambi, Arch. Virol. 149, 1643–1652 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. A. Levy, H. Czosnek, Plant Mol. Biol. 53, 789–803 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. B.L. Patil, I. Dasgupta, Crit. Rev. Plant Sci. 25, 47–64 (2006)

    Article  CAS  Google Scholar 

  36. B.L. Patil, N. Dutt, R.W. Briddon, S.E. Bull, D. Rothenstein, B.K. Borah, I. Dasgupta, J. Stanley, H. Jeske, Virus Res. 124, 59–67 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. C.C. Cheng, M. Ikegami, Ann. Phytopathol. Soc. Jpn. 57, 45–48 (1991)

    Article  CAS  Google Scholar 

  38. D.C. Stenger, K.R. Davis, D.M. Bisaro, Mol. Plant Microbe Interact. 5, 525–527 (1992)

    Article  CAS  Google Scholar 

  39. O. Akano, O. Dixon, C. Mba, E. Barrera, M. Fregene, Theor. Appl. Genet. 105, 521–525 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. T. Blevins, R. Rajeswaran, P.V. Shivaprasad, D. Beknazariants, A. Si-Ammour, H.S. Park, F. Vazquez, D. Robertson, F. Meins Jr, T. Hohn, M.M. Pooggin, Nucleic Acids Res. 34, 6233–6246 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. R. Akbergenov, A. Si-Ammour, T. Blevins, I. Amin, C. Kutter, H., Vanderschuren, P. Zhang, W. Gruissem, F. Meins Jr., T. Hohn, M.M. Pooggin, Nucleic Acids Res. 34, 462–471 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. M.J. Axtell, Annu. Rev. Plant Biol. 64, 137–159 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. P. Raja, B.C. Sanville, R.C. Buchmann, D.M. Bisaro, J. Virol. 82, 8997–9007 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. E.A. Rodriguez-Negrete, J. Carrillo-Tripp, R.F. Rivera-Bustamante, J. Virol. 83, 1332–1340 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. B. Ghoshal, H. Sanfaçon, Virology 456–457, 188–197 (2014)

    Article  PubMed  Google Scholar 

  46. X. Qi, F.S. Bao, Z. Xie, PLoS ONE 4, 4 (2009)

    Article  Google Scholar 

  47. F.E. Vaistij, L. Jones, Plant Physiol. 149, 1399 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. F. Li, C. Huang, Z. Li, X. Zhou, PLoS Pathog. 10, e1003921 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  49. T. Ho, H. Wang, D. Pallett, T. Dalmay, FEBS Lett. 581, 3267–3272 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. S.I. Rudnick, J. Swaminathan, M. Sumaroka, S. Liebhaber, A.M. Gewirtz, Proc. Natl. Acad. Sci. U.S.A. 105, 13787–13792 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. P.V. Shivaprasad, R. Akbergenov, D. Trinks, R. Rajeswaran, K. Veluthambi, T. Hohn, M.M. Pooggin, J. Virol. 79, 8149–8163 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. A. Vermeulen, L. Behlen, A. Reynolds, A. Wolfson, W.S. Marshall, J. Karpilow, A. Khvorova, RNA 11, 674–682 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. J.F. Kreuze, A. Perez, M. Untiveros, D. Quispe, S. Fuentes, I. Barker, R. Simon, Virology 388, 1–7 (2009)

    Article  CAS  PubMed  Google Scholar 

  54. M. Aregger, B.K. Borah, J. Seguin, R. Rajeswaran, E.G. Gubaeva, A.S. Zvereva, D. Windels, F. Vazquez, T. Blevins, L. Farinelli, M.M. Pooggin, PLoS Pathog. 8, e1002941 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  55. H.A. Ebhardt, E.P. Thi, M.B. Wang, P.J. Unrau, Proc. Natl. Acad. Sci. U.S.A. 102, 13398–13403 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The funding was from Monsanto Fund and United States Agency for International Development (USAID). We thank Dr. John Stanley, John Innes Institute (United Kingdom), for providing several clones of CMGs used in this study. We acknowledge Dr. Nigel Taylor and his team for providing tissue cultured cassava plants, Mr. Samuel Amiteye for his help in cloning work, the DDPSC greenhouse staff for excellent care of the plants and Dr. B. Bagewadi for suggestions to improve the manuscript.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basavaprabhu L. Patil.

Additional information

Edited by Thomas Hohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 190 kb)

Supplementary material 2 (JPEG 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, B.L., Fauquet, C.M. Studies on differential behavior of cassava mosaic geminivirus DNA components, symptom recovery patterns, and their siRNA profiles. Virus Genes 50, 474–486 (2015). https://doi.org/10.1007/s11262-015-1184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-015-1184-y

Keywords

Navigation