Skip to main content

Advertisement

Log in

Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Infection of an insect by a baculovirus occurs in two distinct phases, an initial infection of host midgut by occlusion-derived virions (ODVs) and subsequent systemic infection of other tissues by budded virions (BV). A vast majority of investigations of the infection process have been restricted to cell culture studies using BV that emulate the systemic phase of infection. This is one of the first studies to investigate baculovirus gene expression in ODV infected midgut cells. We have focused on the critical first phase of in vivo infection by Mamestra configurata nucleopolyhedrovirus-A in M. configurata larvae, using qPCR and RNAseq mass sequencing to measure virus gene expression in midgut cells. The earliest genes detected by each method had significant overlap, including known early genes as well as genes unique to MacoNPV-A and genes of unknown function. The RNAseq data also revealed a large range of expression levels across all ORFs, which could not be measured using qPCR. This dataset provides a first whole genome transcriptomic analysis of viral genes required for virus infection in vivo and will provide the basis for functionally analyzing specific genes that may be critical elements in baculovirus midgut infectivity and host range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.S. Jiang, I.S. Chang, L.W. Huang, P.C. Chen, C.C. Wen, S.C. Liu, L.C. Chien, C.Y. Lin, C.A. Hsiung, J.L. Juang, J. Virol. 80, 8989–8999 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. M. Iwanaga, K. Takaya, S. Katsuma, M. Ote, S. Tanaka, S.G. Kamita, W. Kang, T. Shimada, M. Kobayashi, Biochem. Biophys. Res. Commun. 323, 599–614 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. Q. Nguyen, R.W. Palfreyman, L.C. Chan, S. Reid, L.K. Nielsen, PLoS ONE 7, e36324 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. M. van Munster, L.G. Willis, M. Elias, M.A. Erlandson, R. Brousseau, D.A. Theilmann, L. Masson, Virology 354, 154–166 (2006)

    Article  PubMed  Google Scholar 

  5. J. Yamagishi, R. Isobe, T. Takebuchi, H. Bando, Arch. Virol. 148, 587–597 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. Y.R. Chen, S. Zhong, Z. Fei, Y. Hashimoto, J.Z. Xiang, S. Zhang, G.W. Blissard, J. Virol. 87, 6391–6405 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. J.E. Breitenbach, K.S. Shelby, H.J. Popham, Viruses 3, 2047–2064 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. S. Katsuma, W. Kang, T. Shin-i, K. Ohishi, K. Kadota, Y. Kohara, T. Shimada, J. Gen. Virol. 92, 200–203 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. J. Xue, N. Qiao, W. Zhang, R.L. Cheng, X.Q. Zhang, Y.Y. Bao, Y.P. Xu, L.Z. Gu, J.D. Han, C.X. Zhang, J. Virol. 86, 7345–7359 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. L.K. Miller (ed.), The Baculoviruses (Plenum press, New York (NY), 1997)

    Google Scholar 

  11. G.F. Rohrmann, Baculovirus Molecular Biology (National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, MD, 2011)

    Google Scholar 

  12. J.O. Washburn, D. Trudeau, J.F. Wong, L.E. Volkman, J. Gen. Virol. 84, 343–351 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. E.K. Engelhard, L.N. Kam-Morgan, J.O. Washburn, L.E. Volkman, Proc. Natl. Acad. Sci. U.S.A. 91, 3224–3227 (1994)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. J. Slack, B.M. Arif, Adv. Virus Res. 69, 99–165 (2006)

    Article  Google Scholar 

  15. B.C. Bonning, in Comprehensive Molecular Insect Science, ed. by I.G. Lawrence, I. Kostas, S.G. Sarjeet (Elsevier, Amsterdam, 2005), pp. 233–270

    Chapter  Google Scholar 

  16. Q. Li, C. Donly, L. Li, L.G. Willis, D.A. Theilmann, M. Erlandson, Virology 294, 106–121 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. M.A. Erlandson, J. Invertebr. Pathol. 56, 47–56 (1990)

    Article  CAS  Google Scholar 

  18. G.E. Bucher, G.K. Bracken, Canadian Entomologist 108, 1327–1338 (1976)

    Article  Google Scholar 

  19. M. Erlandson, S. Newhouse, K. Moore, A. Janmaat, J. Myers, D. Theilmann, Biol. Control 41, 256–263 (2007)

    Article  Google Scholar 

  20. S. Taylor, M. Wakem, G. Dijkman, M. Alsarraj, M. Nguyen, Methods 50, S1–S5 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, F. Speleman, Genome Biol. 3, R34 (2002)

    Article  Google Scholar 

  22. J. Hellemans, G. Mortier, A. De Paepe, F. Speleman, J. Vandesompele, Genome Biol. 8, R19 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  23. Y. Nie, D.A. Theilmann, Virology 404, 168–179 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Nie, M. Fang, M.A. Erlandson, D.A. Theilmann, J. Virol. 86, 3985–3994 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. M. Fang, Y. Nie, S. Harris, M.A. Erlandson, D.A. Theilmann, J. Virol. 83, 12569–12578 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. K. Peng, J.W. van Lent, S. Boeren, M. Fang, D.A. Theilmann, M.A. Erlandson, J.M. Vlak, M.M. van Oers, J. Virol. 86, 4981–4988 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. K. Peng, M.M. van Oers, Z. Hu, J.W. van Lent, J.M. Vlak, J. Virol. 84, 9497–9504 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. J.O. Washburn, E.Y. Chan, L.E. Volkman, J.J. Aumiller, D.L. Jarvis, J. Virol. 77, 280–290 (2003)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. T. Menzel, G.F. Rohrmann, Virus Genes 36, 583–586 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. M.E. Sparks, D.E. Gundersen-Rindal, Viruses 3, 2339–2350 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. R.R. Granados, K.A. Lawler, Virology 108, 297–308 (1981)

    Article  CAS  PubMed  Google Scholar 

  32. K.A. Harrap, J.S. Robertson, J. Gen. Virol. 3, 221–225 (1968)

    Article  Google Scholar 

  33. T.M. Stewart, I. Huijskens, L.G. Willis, D.A. Theilmann, J. Virol. 79, 4619–4629 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. D. Becker, D. Knebel-Morsdorf, J. Virol. 67, 5867–5872 (1993)

    CAS  PubMed Central  PubMed  Google Scholar 

  35. C. Ono, T. Kamagata, H. Taka, K. Sahara, S.I. Asano, H. Bando, Virus Res. 165, 197–206 (2012)

    Article  CAS  PubMed  Google Scholar 

  36. T. Ohkawa, L.E. Volkman, M.D. Welch, J. Cell Biol. 190, 187–195 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. M. Wang, F. Yin, S. Shen, Y. Tan, F. Deng, J.M. Vlak, Z. Hu, H. Wang, J. Virol. 84, 11505–11514 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. A.G.P. Oomens, G.W. Blissard, Virology 254, 297–314 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. O. Lung, M. Westenberg, J.M. Vlak, D. Zuidema, G.W. Blissard, J. Virol. 76, 5729–5736 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. J. de Jong, D.A. Theilmann, B.M. Arif, P.J. Krell, J. Virol. 85, 9696–9707 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  41. T.H. Le, T. Wu, A. Robertson, D. Bulach, P. Cowan, K. Goodge, D. Tribe, Virus Res. 49, 67–77 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. P.R. Macdonald, A. Lustig, M.O. Steinmetz, R.A. Kammerer, J. Struct. Biol. 170, 398–405 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. C.J. Chen, S.M. Thiem, Virology 227, 88–95 (1997)

    Article  CAS  PubMed  Google Scholar 

  44. C. Detvisitsakun, M.F. Berretta, C. Lehiy, A.L. Passarelli, Virology 336, 308–317 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by Agriculture and Agri-Food Canada through the Canadian Crop Genomics Initiative (Project #2613). We thank Sean Taylor from Bio-Rad Laboratories for discussions on the qPCR strategies, Carol Richardson for assistance with data processing in Excel, and Stephanie Harris and Ruwandi Andrahennadi for technical assistance and insect rearing support. We also thank internship students from the University of Western Ontario, Daniel Zigler, Joanna Konopka, and Katrina Bruch, for qPCR set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Cameron Donly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Primers for qPCR of all MacoNPV-A ORFs and M. configurata reference genes. Format XLS (XLSX 24 kb)

Supplementary material 2

Expression values for midgut and fat body samples derived by qPCR. Data at each time point for all ORFs was expressed as the amount relative to the amount at 72 hpi. Values were used to derive the percent sum stacks in Figs 1 and 2. Format XLS (XLSX 53 kb)

Supplementary material 3

Expression values for midgut samples derived by RNAseq. The sheet shows the number of reads detected at each time point as well as the amount relative to the amount at 48 hpi, which was used to derive the percent sum stacks in Fig 3. Format XLS (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donly, B.C., Theilmann, D.A., Hegedus, D.D. et al. Mamestra configurata nucleopolyhedrovirus-A transcriptome from infected host midgut. Virus Genes 48, 174–183 (2014). https://doi.org/10.1007/s11262-013-0986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-013-0986-z

Keywords

Navigation