Skip to main content
Log in

Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Cocksfoot mottle virus (CfMV) coat protein (CP) localization was studied in plant and mammalian cells. Fusion of the full-length CP with enhanced green fluorescent protein (EGFP) localized to the cell nucleus whereas similar constructs lacking the first 33 N-terminal amino acids of CP localized to the cytoplasm. CP and EGFP fusions containing mutations in the arginine-rich motif of CP localized to the cytoplasm and to the nucleus in plant cells indicating the involvement of the motif in nuclear localization. In mammalian cells, mutations in the arginine-rich region were sufficient to completely abolish nuclear transport. The analysis of deletions of amino acid residues 1–11, 1–22, and 22–33 of CP demonstrated that there were two separate nuclear localization signals (NLS) within the N-terminus—a strong NLS1 in the arginine-rich region (residues 22–33) and a weaker NLS2 within residues 1–22. Analysis of point mutants revealed that the basic amino acid residues in the region of the two NLSs were individually not sufficient to direct CP to the nucleus. Additional microinjection studies with fluorescently labeled RNA and CP purified from CfMV particles demonstrated that the wild-type CP was capable of transporting the RNA to the nucleus. This feature was not sequence-specific in transient assays since both CfMV and GFP mRNA were transported to the cell nucleus by CfMV CP. Together the results suggest that the nucleus may be involved in CfMV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Tamm, E. Truve, Sobemoviruses. J. Virol. 74, 6231–6241 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. K. Tars, A. Zeltins, L. Liljas, The three-dimensional structure of cocksfoot mottle virus at 2.7 Å resolution. Virology 310, 287–297 (2003)

    CAS  PubMed  Google Scholar 

  3. C. Abad-Zapatero, S.S. Abdel-Meguid, J.E. Johnson, A.G. Leslie, I. Rayment, M.G. Rossmann, D. Suck, T. Tsukihara, Structure of southern bean mosaic virus at 2.8 Å resolution. Nature 286, 33–39 (1980)

    Article  CAS  PubMed  Google Scholar 

  4. M. Bhuvaneshwari, H.S. Subramanya, K. Gopinath, H.S. Savithri, M.V. Nayudu, M.R. Murthy, Structure of sesbania mosaic virus at 3 Å resolution. Structure 3, 1021–1030 (1995)

    Article  CAS  PubMed  Google Scholar 

  5. C. Qu, L. Liljas, N. Opalka, C. Brugidou, M. Yeager, R.N. Beachy, C.M. Fauquet, J.E. Johnson, T. Lin, 3D domain swapping modulates the stability of members of an icosahedral virus group. Structure 8, 1095–1103 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. P. Plevka, K. Tars, A. Zeltins, I. Balke, E. Truve, L. Liljas, The three-dimensional structure of ryegrass mottle virus at 2.9 Å resolution. Virology 369, 364–374 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. M.A. Hermodson, C. Abad-Zapatero, S.S. Abdel-Meguid, S. Pundak, M.G. Rossmann, J.H. Tremaine, Amino acid sequence of southern bean mosaic virus coat protein and its relation to the three-dimensional structure of the virus. Virology 119, 133–149 (1982)

    Article  CAS  PubMed  Google Scholar 

  8. M.G. Rossmann, C. Abad-Zapatero, M.A. Hermodson, J.W. Erickson, Subunit interactions in southern bean mosaic virus. J. Mol. Biol. 166, 37–73 (1983)

    Article  CAS  PubMed  Google Scholar 

  9. H.S. Savithri, J.W. Erickson, The self-assembly of the cowpea strain of southern bean mosaic virus: formation of T = 1 and T = 3 nucleoprotein particles. Virology 126, 328–335 (1983)

    Article  CAS  PubMed  Google Scholar 

  10. G.L. Lokesh, T.D.S. Gowri, P.S. Satheshkumar, M.R.N. Murthy, H.S. Savithri, A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Virology 292, 211–223 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. P.S. Satheshkumar, G.L. Lokesh, M.R. Murthy, H.S. Savithri, The role of arginine-rich motif and beta-annulus in the assembly and stability of Sesbania mosaic virus capsids. J. Mol. Biol. 353, 447–458 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. T. Tamm, E. Truve, RNA-binding activities of cocksfoot mottle sobemovirus proteins. Virus Res. 66, 197–207 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. S.K. Lee, D.L. Hacker, In vitro analysis of an RNA binding site within the N-terminal 30 amino acids of the southern cowpea mosaic virus coat protein. Virology 286, 317–327 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. D.L. Hacker, Identification of a coat protein binding site on southern bean mosaic virus RNA. Virology 207, 562–565 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. S.K. Lee, C. Dabney-Smith, D.L. Hacker, B.D. Bruce, Membrane activity of the southern cowpea mosaic virus coat protein: the role of basic amino acids, helix-forming potential, and lipid composition. Virology 291, 299–310 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. F. Rabenstein, A. Stanarius, Untersuchungen zum Knaulgrasscheckungs-virus (cocksfoot mottle virus). Arch. Phytopathol. Pflanzenschutz 20, 15–31 (1984)

    Article  Google Scholar 

  17. N. Mohamed, D. Mossop, Cynosurus and cocksfoot mottle viruses: a comparison. J. Gen. Virol. 55, 63–74 (1981)

    Article  CAS  Google Scholar 

  18. A.L. Fuentes, R.I. Hamilton, Failure of long-distance movement of southern bean mosaic virus in a resistant host is correlated with lack of normal virion formation. J. Gen. Virol. 74, 1903–1910 (1993)

    Article  CAS  PubMed  Google Scholar 

  19. M. Ngon A Yassi, C. Ritzenthaler, C. Brugidou, C. Fauquet, R.N. Beachy, Nucleotide sequence and genome characterization of rice yellow mottle virus RNA. J. Gen. Virol. 75, 249–257 (1994)

    Article  Google Scholar 

  20. K. Mäkinen, T. Tamm, V. Næss, E. Truve, Ü. Puurand, T. Munthe, M. Saarma, Characterization of cocksfoot mottle sobemovirus genomic RNA and sequence comparison with related viruses. J. Gen. Virol. 76, 2817–2825 (1995)

    Article  PubMed  Google Scholar 

  21. C. Brugidou, C. Holt, M. Ngon A Yassi, S. Zhang, R. Beachy, C. Fauquet, Synthesis of an infectious full-length cDNA clone of rice yellow mottle virus and mutagenesis of the coat protein. Virology 206, 108–115 (1995)

    Article  CAS  PubMed  Google Scholar 

  22. K. Sivakumaran, B.C. Fowler, D.L. Hacker, Identification of viral genes required for cell-to-cell movement of southern bean mosaic virus. Virology 252, 376–386 (1998)

    Article  CAS  PubMed  Google Scholar 

  23. N. Opalka, C. Brugidou, C. Bonneau, M. Nicole, R.N. Beachy, M. Yeager, C. Fauquet, Movement of rice yellow mottle virus between xylem cells through pit membranes. Proc. Natl Acad. Sci. USA 95, 3323–3328 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Ü. Puurand, K. Mäkinen, M. Baumann, M. Saarma, Nucleotide sequence of the 3’-terminal region of potato virus a RNA. Virus Res. 23, 99–105 (1992)

    Article  CAS  PubMed  Google Scholar 

  25. K. Mäkinen, V. Næss, T. Tamm, E. Truve, A. Aaspõllu, M. Saarma, The putative replicase of the cocksfoot mottle sobemovirus is translated as a part of the polyprotein by -1 ribosomal frameshift. Virology 207, 566–571 (1995)

    Article  PubMed  Google Scholar 

  26. M.W. Shieh, S.R. Wessler, N.V. Raikhel, Nuclear targeting of the maize R protein requires two nuclear localization sequences. Plant Physiol. 101, 353–361 (1993)

    Article  CAS  PubMed  Google Scholar 

  27. E.A. Nigg, Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. S. Kosugi, M. Hasebe, N. Matsumura, H. Takashima, E. Miyamoto-Sato, M. Tomita, H. Yanagawa, Six classes of nuclear localization signals specific to different binding grooves of importin α. J. Biol. Chem. 284, 478–485 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. J. Robbins, S.M. Dilworth, R.A. Laskey, C. Dingwall, Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64, 615–623 (1991)

    Article  CAS  PubMed  Google Scholar 

  30. M.C. Schaad, R. Haldeman-Cahill, S. Cronin, J.C. Carrington, Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J. Virol. 70, 7039–7048 (1996)

    CAS  PubMed  Google Scholar 

  31. M.R. Hajimorad, X.S. Ding, S. Flasinski, S. Mahajan, E. Graff, R. Haldman-Cahill, J.C. Carrington, B.G. Cassidy, NIa and NIb of peanut stripe potyvirus are present in the nucleus of infected cells, but do not form inclusions. Virology 224, 368–379 (1996)

    Article  CAS  PubMed  Google Scholar 

  32. A.P. Lucy, H.S. Guo, W.X. Li, S.W. Ding, Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. EMBO J. 19, 1672–1680 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. E.V. Ryabov, S.H. Kim, M. Taliansky, Identification of a nuclear localization signal and nuclear export signal of the umbraviral long-distance RNA movement protein. J. Gen. Virol. 85, 1329–1333 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. A.R. Rebelo, S. Niewiadomski, S.W. Prosser, P. Krell, B. Meng, Subcellular localization of the triple gene block proteins encoded by a foveavirus infecting grapevines. Virus Res. 138, 57–69 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. S. Haupt, T. Stroganova, E. Ryabov, S.H. Kim, G. Fraser, G. Duncan, M.A. Mayo, H. Barker, M. Taliansky, Nucleolar localization of potato leafroll virus capsid proteins. J. Gen. Virol. 86, 2891–2896 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. J.P. Makkerh, C. Dingwall, R.A. Laskey, Comparative mutagenesis of nuclear localization signals reveals the importance of neutral and acidic amino acids. Curr. Biol. 6, 1025–1027 (1996)

    Article  CAS  PubMed  Google Scholar 

  37. S.H. Kim, S. Macfarlane, N.O. Kalinina, D.V. Rakitina, E.V. Ryabov, T. Gillespie, S. Haupt, J.W.S. Brown, M. Taliansky, Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl Acad. Sci. USA 104, 11115–11120 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. S.H. Kim, E.V. Ryabov, N.O. Kalinina, D.V. Rakitina, T. Gillespie, S. MacFarlane, S. Haupt, J.W.S. Brown, M. Taliansky, Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J. 26, 2169–2179 (2007)

    Article  CAS  PubMed  Google Scholar 

  39. M. Rajamäki, J.P.T. Valkonen, Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like potato virus A in Nicotiana species. Plant Cell 21, 2485–2502 (2009)

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Merike Sõmera for fruitful discussions and Ants Kurg for the initial supply of fluorescent UTP. This work was supported by Estonian Science Foundation grant no. 7363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkki Truve.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

The subcellular localization of CfMV CP and Δ1-33CP fused to the C-terminus of EGFP. CP and Δ1-33CP were transiently expressed in onion (upper two rows) and Cos7 (lower two rows) cells. Left panels correspond to EGFP fluorescence (green), middle to nuclear staining with Hoechst (red) and right to overlay. Cells were transfected with constructs coding the proteins indicated on the left, CP corresponds to full length protein. Scale bars represent 50 μm and 10 μm in onion and Cos7 cells, respectively (TIFF 598 kb)

Supplementary Fig. 2

The subcellular localization of CfMV CP mutants R3L and R5X fused to EGFP, transiently expressed in onion epidermal cells. Images from additional independent experiments revealing the consistency of the localization patterns. Upper panels correspond to EGFP fluorescence (green), middle to nuclear staining with EtBr (red) and bottom to overlay. Cells were transfected with constructs coding the proteins indicated on top. Scale bar 50 μm (TIFF 1589 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olspert, A., Paves, H., Toomela, R. et al. Cocksfoot mottle sobemovirus coat protein contains two nuclear localization signals. Virus Genes 40, 423–431 (2010). https://doi.org/10.1007/s11262-010-0456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-010-0456-9

Keywords

Navigation