Skip to main content
Log in

Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

This study reports the molecular characterization of novel caliciviruses, the St-Valérien-like viruses, which were isolated from pig feces in the province of Quebec, Canada between 2005 and 2007. The genomes of St-Valérien-like viruses contain 6409 nucleotides and include two main open reading frames (ORFs). ORF1 encodes the non structural (NS) polyprotein and the major capsid protein (VP1) while ORF2 encodes the putative basic minor capsid protein. Typical conserved amino acid motifs predict a gene order reminiscent of calicivirus genomes. Phylogenetic, pairwise homology, and distance analyses performed on complete genomic sequences and partial amino acid sequences from the NTPase, polymerase, and major capsid protein segregated the St-Valérien-like viruses in a unique cluster sharing a common root with the Tulane virus and the noroviruses. Based on the genomic analyses presented, the St-Valérien-like viruses are members of a new genus of Caliciviridae for which we propose the name Valovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K.Y. Green, T. Ando, M.S. Balayan, T. Berke, I.N. Clarke, M.K. Estes, D.O. Matson, S. Nakata, J.D. Neill, M.J. Studdert, H.J. Thiel, Taxonomy of the caliciviruses. J. Infect. Dis. 181(Suppl 2), S322–S330 (2000). doi:https://doi.org/10.1086/315591

    Article  Google Scholar 

  2. J.D. Neill, Nucleotide sequence of a region of the feline calicivirus genome which encodes picornavirus-like RNA-dependent RNA polymerase, cysteine protease and 2C polypeptides. Virus Res. 17, 145–160 (1990). doi:https://doi.org/10.1016/0168-1702(90)90061-F

    Article  CAS  Google Scholar 

  3. P.J. Glass, L.J. White, J.M. Ball, I. Leparc-Goffart, M.E. Hardy, M.K. Estes, Norwalk virus open reading frame 3 encodes a minor structural protein. J. Virol. 74, 6581–6591 (2000). doi:https://doi.org/10.1128/JVI.74.14.6581-6591.2000

    Article  CAS  Google Scholar 

  4. S.V. Sosnovtsev, K.Y. Green, Identification and genomic mapping of the ORF3 and VPg proteins in feline calicivirus virions. Virology 277, 193–203 (2000)

    Article  CAS  Google Scholar 

  5. M. Koopmans, K.Y. Green, T. Ando, I.N. Clarke, M.K. Estes, D.O. Matson, S. Nakata, J.D. Neil, A.W. Smith, M.J. Studdert, H.J. Theil, in Family Caliciviridae, ed. by C.M. Fauquet, M.A. Mayo, J. Maniloff, U. Desselberger, L.A. Ball. Virus taxonomy, 8th report of the ICTV (Elsevier Academic Press, Amsterdam, 2005), pp. 843–851

  6. T. Farkas, K. Sestak, C. Wei, X. Jiang, Characterization of a rhesus monkey calicivirus representing a new genus of Caliciviridae. J. Virol. 82, 5408–5416 (2008). doi:https://doi.org/10.1128/JVI.00070-08

    Article  CAS  Google Scholar 

  7. J.R. Smiley, K.O. Chang, J. Hayes, J. Vinje, L.J. Saif, Characterization of an enteropathogenic bovine calicivirus representing a potentially new calicivirus genus. J. Virol. 76, 10089–10098 (2002). doi:https://doi.org/10.1128/JVI.76.20.10089-10098.2002

    Article  CAS  Google Scholar 

  8. K. Numata, M.E. Hardy, S. Nakata, S. Chiba, M.K. Estes, Molecular characterization of morphologically typical human calicivirus Sapporo. Arch. Virol. 142, 1537–1552 (1997). doi:https://doi.org/10.1007/s007050050178

    Article  CAS  Google Scholar 

  9. I.N. Clarke, P.R. Lambden, Organization and expression of calicivirus genes. J. Infect. Dis. 181(Suppl 2), S309–S316 (2000). doi:https://doi.org/10.1086/315575

    Article  CAS  Google Scholar 

  10. B.L. Liu, I.N. Clarke, E.O. Caul, P.R. Lambden, Human enteric caliciviruses have a unique genome structure and are distinct from the Norwalk-like viruses. Arch. Virol. 140, 1345–1356 (1995). doi:https://doi.org/10.1007/BF01322662

    Article  CAS  Google Scholar 

  11. A.W. Smith, D.E. Skilling, N. Cherry, J.H. Mead, D.O. Matson, Calicivirus emergence from ocean reservoirs: zoonotic and interspecies movements. Emerg. Infect. Dis. 4, 13–20 (1998)

    Article  CAS  Google Scholar 

  12. V.F. Ohlinger, B. Haas, H.J. Thiel, Rabbit hemorrhagic disease (RHD): characterization of the causative calicivirus. Vet. Res. 24, 103–116 (1993)

    CAS  PubMed  Google Scholar 

  13. R.I. Glass, J. Noel, T. Ando, R. Fankhauser, G. Belliot, A. Mounts, U.D. Parashar, J.S. Bresee, S.S. Monroe, The epidemiology of enteric caliciviruses from humans: a reassessment using new diagnostics. J. Infect. Dis. 181(Suppl 2), S254–S261 (2000). doi:https://doi.org/10.1086/315588

    Article  Google Scholar 

  14. X.L. Pang, S. Honma, S. Nakata, T. Vesikari, Human caliciviruses in acute gastroenteritis of young children in the community. J. Infect. Dis. 181(Suppl 2), S288–S294 (2000). doi:https://doi.org/10.1086/315590

    Article  Google Scholar 

  15. J.S. Noel, B.L. Liu, C.D. Humphrey, E.M. Rodriguez, P.R. Lambden, I.N. Clarke, D.M. Dwyer, T. Ando, R.I. Glass, S.S. Monroe, Parkville virus: a novel genetic variant of human calicivirus in the Sapporo virus clade, associated with an outbreak of gastroenteritis in adults. J. Med. Virol. 52, 173–178 (1997). doi:https://doi.org/10.1002/(SICI)1096-9071(199706)52:2<173::AID-JMV10>3.0.CO;2-M

    Article  CAS  Google Scholar 

  16. M. Sugieda, H. Nagaoka, Y. Kakishima, T. Ohshita, S. Nakamura, S. Nakajima, Detection of Norwalk-like virus genes in the caecum contents of pigs. Arch. Virol. 143, 1215–1221 (1998). doi:https://doi.org/10.1007/s007050050369

    Article  CAS  Google Scholar 

  17. W.H. Van Der Poel, J. Vinje, H.R. van Der, M.I. Herrera, A. Vivo, M.P. Koopmans, Norwalk-like calicivirus genes in farm animals. Emerg. Infect. Dis. 6, 36–41 (2000)

    Article  Google Scholar 

  18. Q.H. Wang, M. Souza, J.A. Funk, W. Zhang, L.J. Saif, Prevalence of noroviruses and sapoviruses in swine of various ages determined by reverse transcription-PCR and microwell hybridization assays. J. Clin. Microbiol. 44, 2057–2062 (2006). doi:https://doi.org/10.1128/JCM.02634-05

    Article  CAS  Google Scholar 

  19. Q.H. Wang, M.G. Han, S. Cheetham, M. Souza, J.A. Funk, L.J. Saif, Porcine noroviruses related to human noroviruses. Emerg. Infect. Dis. 11, 1874–1881 (2005)

    Article  CAS  Google Scholar 

  20. S.L. Oliver, A.M. Dastjerdi, S. Wong, L. El-Attar, C. Gallimore, D.W. Brown, J. Green, J.C. Bridger, Molecular characterization of bovine enteric caliciviruses: a distinct third genogroup of noroviruses (Norwalk-like viruses) unlikely to be of risk to humans. J. Virol. 77, 2789–2798 (2003). doi:https://doi.org/10.1128/JVI.77.4.2789-2798.2003

    Article  CAS  Google Scholar 

  21. Y. L’Homme, R. Sansregret, É. Plante-Fortier, A.-M. Lamontagne, G. Lacroix, M. Ouardani, J. Deschamps, G. Simard, C. Simard, Genetic diversity of porcine Norovirus and Sapovirus: Canada, 2005–2007. Arch. Virol. 154(4), 581–593 (2009)

    Article  Google Scholar 

  22. V. Martella, E. Lorusso, K. Banyai, N. Decaro, M. Corrente, G. Elia, A. Cavalli, A. Radogna, V. Costantini, L.J. Saif, A. Lavazza, T.L. Di, C. Buonavoglia, Identification of a porcine calicivirus related genetically to human sapoviruses. J. Clin. Microbiol. 46, 1907–1913 (2008). doi:https://doi.org/10.1128/JCM.00341-08

    Article  CAS  Google Scholar 

  23. X. Jiang, P.W. Huang, W.M. Zhong, T. Farkas, D.W. Cubitt, D.O. Matson, Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR. J. Virol. Methods 83, 145–154 (1999). doi:https://doi.org/10.1016/S0166-0934(99)00114-7

    Article  CAS  Google Scholar 

  24. E. Scotto-Lavino, G. Du, M.A. Frohman, 3′ end cDNA amplification using classic RACE. Nat. Protoc. 1, 2742–2745 (2006). doi:https://doi.org/10.1038/nprot.2006.481

    Article  CAS  Google Scholar 

  25. G. Belliot, S.V. Sosnovtsev, T. Mitra, C. Hammer, M. Garfield, K.Y. Green, In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells. J. Virol. 77, 10957–10974 (2003). doi:https://doi.org/10.1128/JVI.77.20.10957-10974.2003

    Article  CAS  Google Scholar 

  26. B.L. Liu, G.J. Viljoen, I.N. Clarke, P.R. Lambden, Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J. Gen. Virol. 80(Pt 2), 291–296 (1999)

    Article  CAS  Google Scholar 

  27. G. Meyers, C. Wirblich, H.J. Thiel, J.O. Thumfart, Rabbit hemorrhagic disease virus: genome organization and polyprotein processing of a calicivirus studied after transient expression of cDNA constructs. Virology 276, 349–363 (2000)

    Article  CAS  Google Scholar 

  28. S.V. Sosnovtsev, G. Belliot, K.O. Chang, V.G. Prikhodko, L.B. Thackray, C.E. Wobus, S.M. Karst, H.W. Virgin, K.Y. Green, Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J. Virol. 80, 7816–7831 (2006). doi:https://doi.org/10.1128/JVI.00532-06

    Article  CAS  Google Scholar 

  29. S.V. Sosnovtsev, M. Garfield, K.Y. Green, Processing map and essential cleavage sites of the nonstructural polyprotein encoded by ORF1 of the feline calicivirus genome. J. Virol. 76, 7060–7072 (2002). doi:https://doi.org/10.1128/JVI.76.14.7060-7072.2002

    Article  CAS  Google Scholar 

  30. S. Kumar, K. Tamura, M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150–163 (2004). doi:https://doi.org/10.1093/bib/5.2.150

    Article  CAS  Google Scholar 

  31. M. Guo, J.F. Evermann, L.J. Saif, Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink. Arch. Virol. 146, 479–493 (2001). doi:https://doi.org/10.1007/s007050170157

    Article  CAS  Google Scholar 

  32. V. Martella, M. Campolo, E. Lorusso, P. Cavicchio, M. Camero, A.L. Bellacicco, N. Decaro, G. Elia, G. Greco, M. Corrente, C. Desario, S. Arista, K. Banyai, M. Koopmans, C. Buonavoglia, Norovirus in captive lion cub (Panthera leo). Emerg. Infect. Dis. 13, 1071–1073 (2007)

    Article  Google Scholar 

  33. M. Kozak, Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266, 19867–19870 (1991)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Marion Koopmans, Harry Vennema, and Kim Green for helpful discussions and critical review of the manuscript. Special thanks to Denis L’Homme for enlightening discussions on phylogenies. This work was supported by the science division of the CFIA/ACIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan L’Homme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’Homme, Y., Sansregret, R., Plante-Fortier, É. et al. Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae . Virus Genes 39, 66–75 (2009). https://doi.org/10.1007/s11262-009-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0360-3

Keywords

Navigation