Skip to main content

Advertisement

Log in

Loss of Linkage Disequilibrium and Accelerated Protein Divergence in Duplicated Cytomegalovirus Chemokine Genes

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Human CMV (hCMV) encodes several captured chemokine ligand and chemokine receptor genes that may play a role in immune evasion. The adjacent viral alpha-chemokine genes UL146 and UL147 appear to have duplicated subsequent to a recent gene capture event. Sequence data from multiple hCMV isolates suggest accelerated protein evolution in one of the paralogues, UL146. Extensive sequence variation was noted throughout the more rapidly evolving paralogue, although significant variation was also observed within the more slowly evolving gene, especially within a region corresponding to a possible signal peptide. In contrast to the haplotype structure observed for other hCMV genes, the distribution of nucleotide variants indicates a marked loss of linkage disequilibrium within UL146 and to a lesser extent UL147. Despite evidence of accelerated protein evolution, the rate of nonsynonymous to synonymous substitutions (dN/dS) in the more rapidly evolving paralogue was not indicative of neutral evolution, but of moderate purifying selection. The data presented here provides a unique opportunity to study the mechanisms by which a recently duplicated pair of genes has diverged and suggests a role for recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hengel W. Brune U.H. Koszinowski (1998) Trends Microbiol 6 190–197 Occurrence Handle10.1016/S0966-842X(98)01255-4 Occurrence Handle1:STN:280:DyaK1c3ns1CrsA%3D%3D Occurrence Handle9614343

    Article  CAS  PubMed  Google Scholar 

  2. P.S. Beisser C.S. Goh F.E. Cohen S. Michelson (2002) Curr Top Microbiol lmmunol 269 203–234 Occurrence Handle1:CAS:528:DC%2BD38XnvF2isLY%3D

    CAS  Google Scholar 

  3. T.A. Cha E. Tom G.W. Kemble G.M. Duke E.S. Mocarski R.R. Spaete (1996) J Virol 70 78–83 Occurrence Handle1:CAS:528:DyaK2MXpvFSnuro%3D Occurrence Handle8523595

    CAS  PubMed  Google Scholar 

  4. B.J. Margulies H. Browne W. Gibson (1996) Virology 225 111–125 Occurrence Handle10.1006/viro.1996.0579 Occurrence Handle1:CAS:528:DyaK28XmvFCmur8%3D Occurrence Handle8918538

    Article  CAS  PubMed  Google Scholar 

  5. O. Pleskoff C. Treboute A. Brelot N. Heveker M. Seman M. Alizon (1997) Science 276 1874–1878 Occurrence Handle10.1126/science.276.5320.1874 Occurrence Handle1:CAS:528:DyaK2sXksVCmsrk%3D Occurrence Handle9188536

    Article  CAS  PubMed  Google Scholar 

  6. M.E. Penfold D.J. Dairaghi G.M. Duke N. Saederup E.S. Mocarski G.W. Kemble T. Schall (1999) J. Proc Natl Acad Sci USA 96 9839–9844 Occurrence Handle10.1073/pnas.96.17.9839 Occurrence Handle1:CAS:528:DyaK1MXlsVymtLY%3D

    Article  CAS  Google Scholar 

  7. M.N. Prichard M.E. Penfold G.M. Duke R.R. Spaete G.W. Kemble (2001) Rev Med Virol 11 191–200 Occurrence Handle10.1002/rmv.315 Occurrence Handle1:CAS:528:DC%2BD3MXkslGqtbk%3D Occurrence Handle11376481

    Article  CAS  PubMed  Google Scholar 

  8. R. Arav-Boger R.E. Willoughby R.F. Pass J.C. Zong W.J. Jang D. Alcendor G.S. Hayward (2002) J Infect Dis 186 1057–1064 Occurrence Handle10.1086/344238 Occurrence Handle1:CAS:528:DC%2BD38Xos1eksrs%3D Occurrence Handle12355354

    Article  CAS  PubMed  Google Scholar 

  9. S. Kumar K. Tamura I.B. Jakobsen M. Nei (2001) Bioinformatics 17 1244–1245 Occurrence Handle10.1093/bioinformatics/17.12.1244 Occurrence Handle1:CAS:528:DC%2BD38XmtVCktQ%3D%3D Occurrence Handle11751241

    Article  CAS  PubMed  Google Scholar 

  10. R. Wernersson A.G. Pedersen (2003) Nucleic Acids Res 31 3537–3539 Occurrence Handle10.1093/nar/gkg609 Occurrence Handle1:CAS:528:DC%2BD3sXltVWis7s%3D Occurrence Handle12824361

    Article  CAS  PubMed  Google Scholar 

  11. J. Rozas J.C. Sanchez-DelBarrio X. Messeguer R. Rozas (2003) Bioinformatics 19 2496–2497 Occurrence Handle10.1093/bioinformatics/btg359 Occurrence Handle1:CAS:528:DC%2BD3sXpvVSisLo%3D Occurrence Handle14668244

    Article  CAS  PubMed  Google Scholar 

  12. W. Dunn C. Chou H. Li R. Hai D. Patterson V. Stolc H. Zhu F. Liu (2003) Proc Natl Acad Sci USA 100 14223–14228 Occurrence Handle1:CAS:528:DC%2BD3sXpsFGiurw%3D Occurrence Handle14623981

    CAS  PubMed  Google Scholar 

  13. M.A. Nowak M.C. Boerlijst J. Cooke J.M. Smith (1997) Nature 388 167–171 Occurrence Handle10.1038/40618 Occurrence Handle1:CAS:528:DyaK2sXksFWmuro%3D Occurrence Handle9217155

    Article  CAS  PubMed  Google Scholar 

  14. A.J. Davison A. Dolan P. Akter C. Addison DJ. Dargan D.J. Alcendor D.J. McGeoch G.S. Hayward (2003) J Gen Virol 84 17–28 Occurrence Handle10.1099/vir.0.18606-0 Occurrence Handle1:CAS:528:DC%2BD3sXksl2jtA%3D%3D Occurrence Handle12533697

    Article  CAS  PubMed  Google Scholar 

  15. A. Sahagun-Ruiz A.M. Sierra-Honigmann P. Krause P.M. Murphy (2004) Virus Genes 28 71–83 Occurrence Handle10.1023/B:VIRU.0000012265.33168.b5 Occurrence Handle1:CAS:528:DC%2BD2cXjvVSisA%3D%3D Occurrence Handle14739653

    Article  CAS  PubMed  Google Scholar 

  16. M. Kellis B.W. Birren E.S. Lander (2004) Nature 428 617–624 Occurrence Handle1:CAS:528:DC%2BD2cXivVGmtLY%3D Occurrence Handle15004568

    CAS  PubMed  Google Scholar 

  17. Kondrashov F.A., Rogozin I.B., Wolf Y.I., and Koonin E.V., Genome Biol. 3, RESEARCH0008–2002.

  18. R.C. Bruckner R.E. Dutch B.V. Zemelman E.S. Mocarski I.R. Lehman (1992) Proc Natl Acad Sci USA 89 10950–10954 Occurrence Handle1:CAS:528:DyaK3sXltlCktA%3D%3D Occurrence Handle1332062

    CAS  PubMed  Google Scholar 

  19. F. Meurens F. Schynts G.M. Keil B. Muylkens A. Vanderplasschen P. Gallego E. Thiry (2004) J Virol 78 3872–3879 Occurrence Handle10.1128/JVI.78.8.3872-3879.2004 Occurrence Handle1:CAS:528:DC%2BD2cXjtFWlsLk%3D Occurrence Handle15047803

    Article  CAS  PubMed  Google Scholar 

  20. M. Haberland U. Meyer-Konig F.T. Hufert (1999) J GenVirol 80 IssueIDPt 6 1495–1500 Occurrence Handle1:CAS:528:DyaK1MXjs1Omurw%3D

    CAS  Google Scholar 

  21. D.T. Haydon A.D. Bastos P. Awadalla (2004) J Gen Virol 85 1095–1100 Occurrence Handle10.1099/vir.0.19588-0 Occurrence Handle1:CAS:528:DC%2BD2cXktFertrg%3D Occurrence Handle15105526

    Article  CAS  PubMed  Google Scholar 

  22. R.R. Hudson (1987) Genet Res 50 245–250 Occurrence Handle1:STN:280:BieC28jotFI%3D Occurrence Handle3443297

    CAS  PubMed  Google Scholar 

  23. S. Ohno (1973) Nature 244 259–262 Occurrence Handle1:STN:280:By%2BC2svisFw%3D

    CAS  Google Scholar 

  24. M.K. Hughes A.L. Hughes (1993) Mol Biol Evol 10 1360–1369 Occurrence Handle1:CAS:528:DyaK2cXht1KqsLo%3D Occurrence Handle8277859

    CAS  PubMed  Google Scholar 

  25. J.B. Walsh (1987) Genetics 117 543–557 Occurrence Handle1:STN:280:BieD1cvjs1E%3D Occurrence Handle3692140

    CAS  PubMed  Google Scholar 

  26. M.J. Lercher L.D. Hurst (2002) Trends in Genetics 18 337–340 Occurrence Handle10.1016/S0168-9525(02)02669-0 Occurrence Handle1:CAS:528:DC%2BD38XlsVOmu7k%3D Occurrence Handle12127766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravit Arav-Boger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arav-Boger, R., Zong, JC. & Foster, C.B. Loss of Linkage Disequilibrium and Accelerated Protein Divergence in Duplicated Cytomegalovirus Chemokine Genes. Virus Genes 31, 65–72 (2005). https://doi.org/10.1007/s11262-005-2201-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-005-2201-3

Keywords

Navigation