Skip to main content
Log in

Nucleic Acid Binding Property of the Gene Products of Rice stripe virus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

GST fusion proteins of the six gene products from RNAs 2,3 and 4 of the tenuivirus, Rice stripe virus (RSV), were used to study the nucleic acid binding activities in vitro. Three of the proteins, p3, pc3 and pc4, bound both single- and double-stranded cDNA of RSV RNA4 and also RNA3 transcribed from its cDNA clone, while p2, pc2-N (the N-terminal part of pc2) nor p4 bound the cDNA or RNA transcript. The binding activity of p3 is located in the carboxyl-terminus amino acid 154–194, which contains basic amino acid rich β-sheets. The acidic amino acid-rich amino-terminus (amino acids 1–100) of p3 did not have nucleic acid binding activity. The related analogous gene product of the tenuivirus, Rice hoja blanca virus, is a suppressor of gene silencing and the possibility of the nucleic acid binding ability of RSV p3 being associated with this property is discussed. The C-terminal part of the RSV nucleocapsid protein, which also contains a basic region, binds nucleic acids, which is consistent with its function. The central and C-terminal regions of pc4 bind nucleic acid. It has been suggested that this protein is a cell-to-cell movement protein and nucleic acid binding would be in accord with this function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Toriyama Y. Watanabe (1989) J Gen Virol 70 505–511

    Google Scholar 

  2. S. Toriyama (1986) Microbiol Sci 3 347–351

    Google Scholar 

  3. S. Toriyama M. Takahashi Y. Sano T. Shimizu (1994) J Gen Virol 75 3569–3579

    Google Scholar 

  4. M. Takahashi S. Toriyama C. Hamamatsu A. Ishihama ( 1993) J Gen Virol 74 769–773

    Google Scholar 

  5. Liang D., Qu Z., Ma X., and Hull R., accompanying paper submitted

  6. Y. Hayano T. Kakutani T. Hayashi Y. Minobe (1990) Virology 177 372–374

    Google Scholar 

  7. T. Kakutani Y. Hayano T. Hayashi Y. Minobe ( 1990) J Gen Virol 71 1427–1432

    Google Scholar 

  8. T. Kakutani Y. Hayano T. Hayashi Y. Minobe (1991) J Gen Virol 72 465–468

    Google Scholar 

  9. Y. Zhu T. Hayakawa S. Toriyama M. Takahashi ( 1991) J Gen Virol 72 763–767

    Google Scholar 

  10. Z. Qu D. Liang G. Harper R. Hull (1997) Virus Genes 15 IssueID2 99–103

    Google Scholar 

  11. E. Bucher T. Sijen P. Haan ParticleDe R. Goldbach M. Prins (2003) J Virol 77 IssueID2 1329–1336

    Google Scholar 

  12. Y. Zhu T. Hayakawa S. Toriyama (1992) J Gen Virol 73 1309–1312

    Google Scholar 

  13. D. Baulcombe (2004) Nature 431 356–362

    Google Scholar 

  14. G. Moissiard O. Voinnet (2004) Mol Plant Pathol 5 71–82

    Google Scholar 

  15. B.M. Roth G.J. Pruss V.B. Vance ( 2004) Virus Res 102 97–108

    Google Scholar 

  16. R. Lu A. Folimonov M. Shintaku W.-X. Li B.W. Falk W.O. Dawson S.-W. Ding (2004) Proc Natl Acad Sci USA 101 15742–15747

    Google Scholar 

  17. L. Lakatos G. Szittya D. Silhavy J. Burguyan ( 2004) EMBO J 23 876–884

    Google Scholar 

  18. D.C. Baulcombe A. Molnár ( 2004) Trends Biochem Sci 29 279–281

    Google Scholar 

  19. K.D. Kasschau Z. Xie E. Allen C. Llave E.J. Chapman K.A. Krizan J.C. Carrington ( 2003) Dev Cell 4 205–217

    Google Scholar 

  20. J. Sukegawa G. Blobel (1993) Cell 72 29–38

    Google Scholar 

  21. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., and Lipman D.J., Nucleic Acids Res 25, 3389–3402, 1997

    Google Scholar 

  22. J.D. Thompson T.J. Gibson F. Plewniak F. Jeanmougin D.G. Higgins (1997) Nucleic Acids Res 24 4876–4882

    Google Scholar 

  23. M. Gribskov R.R. Burgess J. Devereux (1986) Nucleic Acids Res 14 327–334

    Google Scholar 

  24. M.M.H. Storms R. Kormelink D. Peters J.W.M. Lent Particlevan R.W. Goldbach (1995) Virology 214 485–493

    Google Scholar 

  25. K.E. Richmond K. Chenault J.L. Sherwood T.L. German (1998) Virology 248 6–11

    Google Scholar 

  26. I.G. Maia F. Bernardi (1996) J Gen Virol 77 869–877

    Google Scholar 

  27. N.E. Yelina E.I. Savenkov A.G. Solovyev S.Y. Morozov J.P. Valkonen (2002) J Virol 76 12981–12991

    Google Scholar 

  28. U. Melcher (2000) J Gen Virol 81 257–266

    Google Scholar 

  29. T. Saito Y. Imai T. Meshi Y. Okada (1988) Virology 167 653–656

    Google Scholar 

  30. V. Citovski M.L. Wong A.L. Shaw B.V.V. Prasad P. Zambryski (1992) Plant Cell 4 397–411

    Google Scholar 

  31. T.A.M. Osman R.J. Hayes K.W. Buck (1992) J Gen Virol 73 223–227

    Google Scholar 

  32. D. Giesman-Cookmeyer S.A. Lommel (1993) Plant Cell 5 973–982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Hull.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, D., Ma, X., Qu, Z. et al. Nucleic Acid Binding Property of the Gene Products of Rice stripe virus. Virus Genes 31, 203–209 (2005). https://doi.org/10.1007/s11262-005-1797-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-005-1797-7

Key words

Navigation