Skip to main content

Advertisement

Log in

The TATGARAT Box of the HSV-1 ICP27 Gene is Essential for Immediate Early Expression but not Critical for Efficient Replication in vitro or in vivo

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

We constructed a recombinant virus containing a promoter mutation altering the immediate-early expression of the HSV-1 ICP27 transcript, ICP27ΔSma, which contains a deletion of the “TATGARAT” and surrounding sequences, but retains the rest of the ICP27 promoter. This mutant does not exhibit immediate-early expression of ICP27 using criteria of expression in the absence of de novo protein synthesis and earliest expression in the kinetic cascade. While transcript abundance at 1h after infection at 0.1 PFU/cell in mouse embryo fibroblasts was significantly altered compared to infections with wt-rescues, by 4h after infection these differences were diminished or absent. Consistent with this observation, levels of some critical proteins were reduced in the mutant as compared to rescue infections at the earliest times tested, but were equivalent by 8–12h pi. Further, both single and multi-step virus replication was equivalent with both mutants and rescues. Thus, altering the immediate early kinetics of ICP27 leads to a sub-optimal quantitative lag-phase in gene expression but without consequence to replication fitness in vitro.Infections in vivo also revealed the ability of mutant and rescue virus to invade the CNS of mice following footpad injections was equivalent. The nature of the role of immediate-early ICP27 expression is discussed in light of these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Xiao P., and Capone J.P. Mol Cell Biol 10, 4974–4977, 1990.

    PubMed  Google Scholar 

  2. Arnosti D.N., Preston C.M., Hagmann M., Schaffner W., Hope R.G., Laughlan G., and Luisi B.F. Nucleic Acids Res 21, 5570–5576, 1993.

    PubMed  Google Scholar 

  3. Bailey A.C., and Thompson R. Intervirology 34, 74–85, 1992.

    PubMed  Google Scholar 

  4. Gelman I.H., and Silverstein S.J., J Virol 61, 2286–2296, 1987.

    PubMed  Google Scholar 

  5. Stern S., and Herr W., Genes Dev 5, 2555–2566, 1991.

    PubMed  Google Scholar 

  6. Kristie T.M. and Sharp P.A., Genes Dev 4, 2383–2396, 1990.

    PubMed  Google Scholar 

  7. Wilson A.C., Cleary M.A., Lai J.-S., LaMarco K., Peterson M.G., and Herr W. Cold Spring Harbor Symp Quant Biol 58, 167–178, 1993.

    PubMed  Google Scholar 

  8. Wagner E.K., Garcia R. J.J., Stingley S.W., Aguilar J.S., Buehler L., Devi-Rao G. B., and Ghazal P. Prog Nucleic Acid Res Mol Biol 71, 445–491, 2002.

    PubMed  Google Scholar 

  9. Zhang Y.-F., and Wagner E.K., Virus Genes 1, 49–60, 1987.

    PubMed  Google Scholar 

  10. Sun A-X., Devi-Rao G.V., Rice M.K., Gary L.H., Bloom D.C., Sandri-Goldin R.M., Ghazal P., and Wagner E.K., J Virol 2004.

  11. Stingley S.W., Ramirez J.J.G., Aguilar S.A., Simmen K., Sandri-Goldin R.M., Ghazal P., and Wagner E.K., J Virol 74, 9916–9927, 2000.

    PubMed  Google Scholar 

  12. Aguilar J.S., Roy D., Ghazal P., and Wagner E.K., BMC.Infect.Dis. 2, 9, 2002.

    PubMed  Google Scholar 

  13. Lieu P.T., and Wagner E.K., J Virol 74, 2770–2776, 2000.

    PubMed  Google Scholar 

  14. Wagner E.K., Petroski M.D., Pande N.T., Lieu P.T., and Rice M.K., Methods 16, 105–116, 1998.

    PubMed  Google Scholar 

  15. Yang W.C., Devi-Rao G.V., Ghazal P., Wagner E.K., and Triezenberg S.J., J Virol 76, 12758–12774, 2002.

    PubMed  Google Scholar 

  16. Yguerabide J., and Yguerabide E.E., J Cell Biochem Suppl (Suppl) 37, 71–81, 2001.

    Google Scholar 

  17. Yguerabide J., and Yguerabide E.E., Anal Biochem, 52, 157–176, 1998.

    Google Scholar 

  18. Yguerabide J. and Yguerabide E.E., Anal Biochem, 262, 137–156, 1998.

    PubMed  Google Scholar 

  19. Smith I.L., Hardwicke M.A., and Sandri-Goldin R.M., Virology 186, 74–86, 1992.

    PubMed  Google Scholar 

  20. Bloom D.C. HSV Vectors for Gene Therapy, Brown S.M. and MacLean A.R., Inc. Methods in Molecular Medicine. 10, 369–386. 1999. Humana Press, Totowa, Ref Type: Serial (Book, Monograph).

    Google Scholar 

  21. Bloom D.C., and Stevens J.G., J Virol 68, 3761–3772, 1994.

    PubMed  Google Scholar 

  22. Tran R.K., Lieu P.T., Aguilar J.S., Wagner E.K., and Bloom D.C., J Virol. 76, 2199–2205, 2004.

    Google Scholar 

  23. Wagner E.K., Guzowski J.F., and Singh J. Transcription of the Herpes Simplex Virus Genome during Productive and Latent Infection. In Cohen W.E., and Moldave K. (ed.), Progress in Nucleic Acid Research and Molecular Biology, Academic Press, San Diego, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A., Devi-Rao, G., Rice, M. et al. The TATGARAT Box of the HSV-1 ICP27 Gene is Essential for Immediate Early Expression but not Critical for Efficient Replication in vitro or in vivo . Virus Genes 29, 335–343 (2004). https://doi.org/10.1007/s11262-004-7437-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-004-7437-9

Navigation