Skip to main content
Log in

Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis

  • Short Communication
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Biofilm production by Staphylococcus aureus, an important virulence factor was investigated employing phenotypic and genotypic methods. A total of 102 S. aureus isolates from bovine subclinical mastitis cases were included in the study. Maximum number of biofilm producing strains were detected by Congo red agar (CRA) method (48.03%) followed by tube method (36.27%). Tissue culture plate method (TCP) without and with destaining identified 19.60 and 29.41% of S. aureus as biofilm producers, respectively. A polymerase chain reaction for detection of intercellular adhesion genes, icaA and icaD, responsible for biofilm formation was standardized. Of the 102 S. aureus isolates investigated, 36 (35.29%) strains revealed presence of both the genes. Considering polymerase chain reaction as a standard test, CRA and TCP without destaining were the most sensitive and specific, respectively. PCR technique standardized for detection of the icaA and icaD genes is reliable for identifying biofilm producing potential of S. aureus which may help in rapid detection of biofilm-producer Staphylococci. This would allow the early application of control measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

CMT:

California Mastitis Test

CRA:

Congo red agar

MTCC:

Microbial Type Culture Collection

PCR:

Polymerase chain reaction

SCM:

Subclinical mastitis cases

TCP:

Tissue culture plate method

icaA:

Intercellular adhesion gene A

References

  • Aguilar B, Amorena B, Iturralde M (2001) Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet Microbiol 78:183–191

    Article  CAS  PubMed  Google Scholar 

  • Annemuller C, Lammler CH, Zsehock M (1999) Genotyping of Staphylococcus aureus isolated from bovine mastitis. Vet Microbiol 69:217–224

    Google Scholar 

  • Arciola CR, Baldassarri L, Montanaro L (2001) Presence of icaA and icaD genes and slime production in a collection of Staphylococcal strains from catheter associated infections. J Clin Microbiol 39:2151–2156

    Article  CAS  PubMed  Google Scholar 

  • Baselga R, Albizu I, De La Cruz M, Del Cacho E, Barberan M, Amorena B (1993) Phase variation of slime production in Staphylococcus aureus: implication in colonization and virulence. Infect Immun 61:4857–4862

    CAS  PubMed  Google Scholar 

  • Brouillette E, Hyodo M, Hayakawa Y, Karaolis DKR, Malouin F (2005) 30,50-Cyclic diguanylic acid reduces the virulence of biofilm-forming Staphylococcus aureus strains in a mouse model of mastitis infection. Antimicrob Agents Chemother 49:3109–3113

    Article  CAS  PubMed  Google Scholar 

  • Catalanotti P, Lanza M, Del Prete A, Lucido M, Catania MR, Galle F, Boggia D, Perfetto B, Rossano F (2005) Slime producing Staphylococcus epidermidis and S. aureus in acute bacterial conjunctivitis in soft contact lens wearers. New Microbiol 28: 345–354

    CAS  PubMed  Google Scholar 

  • Christensen GD, Simpson WA, Bisno AL, Beachey EH (1982) Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37: 318–326

    CAS  PubMed  Google Scholar 

  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF,Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22: 996–1006

    CAS  PubMed  Google Scholar 

  • Cifrian E, Guidry AJ, O’Brien CN, Nickerson SC, Marquardt WW (1994) Adherence of Staphylococcus aureus to cultured bovine mammary epithelial cells. J Dairy Sci 77: 970–983

    CAS  PubMed  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infection. Science 284:1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Cowan ST, Steel KJ (1970) Manual for the Identification of Medical Bacteria. The Syndics of the Cambridge University Press, Bentley House 200, Euston Road, London, UK

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67: 5427–5433

    CAS  PubMed  Google Scholar 

  • Cruickshank R, Duguid JP, Marmoin BP, Swain RHA (1975) Medical Microbiology Vol. 2, 12th edn. Churchill Livingstone, Edinburgh, London and New York

  • Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  CAS  PubMed  Google Scholar 

  • Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penade´s JR (2002) Expression of biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Inf Imm 70:3180–3186

    Google Scholar 

  • Cucarella C, Ángeles Tormo M, Ubeda C, Pilar Trotonda M, Monzon M, Peris C, Amorena B, Lasa I, Penades JS (2004) Role of biofilm associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72: 2177–2185

    Article  CAS  PubMed  Google Scholar 

  • Cuteri V, Marenzani ML, Mazzola R, Tosti N, Merletti L, Arcioniand S, Valente C (2004) Staphylococcus aureus study of genomic similarity of strains isolated in veterinary pathology using AFLD. Indian J Comp Immunol Microbiol Infect Dis 27: 247–253

    Article  CAS  Google Scholar 

  • FAO (2003): Bulletin of statistics. 4:88–89

  • Fox LK, Zadoks RN, Gaskins CT (2005) Biofilm production by Staphylococcus aureus associated with intramammary infection. Vet Microbiol 107:295–299

    Article  CAS  PubMed  Google Scholar 

  • Freeman DJ, Falkiner FR, Keane, CT (1989) New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol, 42: 872–874

    Article  CAS  PubMed  Google Scholar 

  • Gotz F (2002) Microreview on Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Agarwal A (2009) Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J Microbiol Methods. 76: 88–92

    Article  CAS  PubMed  Google Scholar 

  • Kalorey, DR, Yuraj S, Kurkure NV, Chaousalkar KK, Barbuddhe SB (2007) PCR-based detection of genes encoding virulence determinants in Staphylococcus aureus from bovine subclinical mastitis cases. J Vet Sci 8:151–154

    Article  PubMed  Google Scholar 

  • Kaur H, Kumar P, Ray P, Kaur J, Chakraborti A. (2009) Biofilm formation in clinical isolates of group B streptococci from north India. Microb Pathog. 46:321–327

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Lubanshevsky E, Trainin Z (2003) Staphylococcus aureus vaccine against mastitis in dairy cows. Composition and evaluation of its immunogenecity in mouse model. Vet Immunol Immunopathol 35: 99–106

    CAS  Google Scholar 

  • Lopez JV, Peter-Roth E, Claverie-Martin F (2002) Detection of Staphylococcus aureus clinical isolates harboring the ica gene cluster needed for biofilm establishment. J Clin Microbial 40: 1569–1570

    Article  Google Scholar 

  • Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of Staphylococci an evaluation of three different screening methods. Indian J Med Microbiol 24: 25–29

    Article  CAS  PubMed  Google Scholar 

  • Melchior MB, Vaarkamp H, Fink-Gremmels J (2006) Biofilms: a role in recurrent mastitis infection? Vet J 171:398–407

    Article  CAS  PubMed  Google Scholar 

  • Oliveira M, Bexiga R, Nunes SF, Carneiro C, Cavaco LM, Bernardo F, Vilela CL (2006) Biofilm-forming ability profiling of Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 118:133–140

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304

    Article  PubMed  Google Scholar 

  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363.

    Article  CAS  PubMed  Google Scholar 

  • Salasia SI, Khusnan Z, Lammler C, Zschock M (2004) Comparative studies on pheno-and genotypic properties of Staphylococcus aureus isolated from bovine subclinical mastitis in central Java in Indonesia and Hesse in Germany. J Vet Sci 5:103–109

    PubMed  Google Scholar 

  • Thapliyal DC, Mishra DS (1996) Fundamentals of animal hygiene and epidemiology, International Book Distributing Co. Charbagh, Lucknow, India. pp 92

    Google Scholar 

  • Vancraeynest D, Hermans K, Haesebrouck F (2004) Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs. Vet Microbiol 103:241–247

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan P, Nair MM, Annamalai T, Venkitanarayanan KS (2003) Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 92:179–185

    Article  CAS  PubMed  Google Scholar 

  • Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubal, F. M., Brent, R., Kirston, R. L., Moore, D.D., Seidman, J. G., Smith, J. A. and Struhl, K. (eds), Current protocols in molecular Biology. Vol. 1, John Wiley and Sons New York, pp 2.4.1–2.4.2.

  • Yazdani R, Oshaghi M, Havayi A, Pishva E, Salehi R, Sadeghizadeh M, Foroohesh H (2006) Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infection. Iranian J Publ Health 35: 25–28

    CAS  Google Scholar 

  • Zadoks RN, van Leeuwen WB, Kreft D, Fox LK, Barkema HW, Schukken YH, van Belkum A (2002) Comparison of Staphylococcus aureus isolates from bovine and human skin, milking equipment, and bovine milk by phage typing, pulse-field gel electrophoresis, and binary typing. J Clin Microbiol 40: 3894–3902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhadeo B. Barbuddhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanawade, N.B., Kalorey, D.R., Srinivasan, R. et al. Detection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Res Commun 34, 81–89 (2010). https://doi.org/10.1007/s11259-009-9326-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-009-9326-0

Keywords

Navigation