Skip to main content
Log in

Comparison of Hydrolytic and Conjugative Biotransformation Pathways in Horse, Cattle, Pig, Broiler Chick, Rabbit and Rat Liver Subcellullar Fractions

  • Pharmacology
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

To complete a studyaimed at investigating the pattern of the basal activities of liver xenobioticmetabolizing enzymes in major and minor species intended for meat production, microsomal carboxylesterases and some conjugating enzyme activities were determined and compared in liver preparations from horses, cattle, pigs, rabbits and broiler chicks, using the rat as a reference species. Horses and broiler chicks exhibited a lower microsomal carboxylesterase activity towards indophenyl or p-nitrophenyl acetate than that measured in cattle or pig subfractions. Among food-producing species, the rate of glucuronidation of either 1-naphthol or p-nitrophenol was in the order pigs ∼rabbits > horses >> cattle > broiler chicks. The widest variations were observed in the acetylation capacity towards p-aminobenzoic acid or isoniazid, which in rabbits was 3-fold to 11-fold greater than that displayed by any other examined species; low but measurable activities were found in equine and bovine cytosols. The activity of cytosolic glutathione S-transferase (GST) accepting the general substrate 1-chloro-2,4-dinitrobenzene was significantly higher in rabbits, horses and pigs than in rat, broiler chicks and cattle. Finally, an uneven pattern of activity towards the other tested GST substrates – 3,4-dichloronitrobenzene, ethacrinic acid or 1,2-epoxybutane – was observed, possibly reflecting the species-related expression of different GST classes; in this respect, the conjugative capacity displayed by horses was higher than or comparable to that found in the other food-producing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BOX:

1,2-epoxybutane

CDNB:

1-chloro-2,4-dinitrobenzene

DCNB:

3,4-dichloronitrobenzene

ETA:

ethacrinic acid

GST:

glutathione S-transferase

INH:

isoniazid

IPA:

indophenyl acetate

NAT:

N-acetyltransferase

NPSH:

non-protein sulphydryls

PABA:

p-aminobenzoic acid

PNPA:

p-nitrophenyl acetate

UGT:

uridinediphosphoglucuronyltransferase

XMEs:

xenobiotic-metabolizing enzymes

References

  • Antoine, B., Boutin, J.A. and Siest, G., 1988. Further validation of the Mulder and Van Doorn procedure for the measurement of microsomal UDP-glucuronosyltransferase activities. Biochemical Journal, 252, 930–931

    CAS  PubMed  Google Scholar 

  • Atterberry, T.T., Burnett, W.T. and Chambers, J.E., 1997. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicology and Applied Pharmacology, 147, 411–418

    Article  CAS  PubMed  Google Scholar 

  • Baars, A.J., Jansen, M. and Breimer, D.D., 1978. The influence of phenobarbital, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin of glutathione S-transferase activity of rat liver cytosol. Biochemical Pharmacology, 27, 2487–2497

    Article  CAS  PubMed  Google Scholar 

  • Bock, K.W., 2002. UDP-Glucuronosyltransferases. In: Costas, I. (ed.), Enzyme Systems That Metabolise Drugs and Other Xenobiotics, (Wiley, Chichester), 281–318

    Google Scholar 

  • Carletti, M., 1999. Studi comparativi in vitro delle reazioni di biotrasformazione in specie animali da reddito e da laboratorio, (PhD thesis, Universityof Turin)

  • Chauret, N., Gauthier, A., Martin, J. and Nicoll-Griffith, D., 1997. In vitro comparison of cythocrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metabolism and Disposition, 25, 1130–1136

    CAS  PubMed  Google Scholar 

  • Coulet, M., Eeckhoutte, C. and Galtier, P., 1996. Ontogenic development of drug-metabolizing enzymes in male chicken liver. Canadian Journal of Physiology and Pharmacology, 74, 32–37

    Article  CAS  PubMed  Google Scholar 

  • Court, M.H., 2001. Acetaminophen UDP-glucuronosyltransferase in ferrets: species and gender differences and sequence analysis of ferret UGT1A6. Journal of Veterinary Pharmacology and Therapeutics, 24, 415–422

    Article  CAS  PubMed  Google Scholar 

  • D'Silva, C., 1990. Inhibition and recognition studies on glutathione-binding site of equine liver glutathione S-transferase. Biochemical Journal, 27, 161–165

    Google Scholar 

  • Eaton, D.L. and Bammler, T.K., 1999. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicological Sciences, 49, 156–164

    Article  CAS  PubMed  Google Scholar 

  • Geisler, S.A. and Olshan, A.F., 2001. GSTM1, GSTT1, and the risk of squamous cell carcinoma of the head and neck: a mini-HuGE review. American Journal of Epidemiology, 154, 95–105

    Article  CAS  PubMed  Google Scholar 

  • Glatt, H., 2002. Sulphotransferases. In: Costas, I. (ed.), Enzyme Systems That Metabolise Drugs and Other Xenobiotics, (Wiley, Chichester), 353–440

    Google Scholar 

  • Habig, W.H., Pabst, M.J. and Jakoby, W.B., 1974. Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139

    CAS  PubMed  Google Scholar 

  • Hayes, J.D., Milner, S.W. and Walker, S.W., 1989. Expression of glyoxalase, glutathione peroxidase and glutathione S-transferase isoenzymes in different bovine tissues. Biochimica et Biophysica Acta, 994, 21–29

    CAS  PubMed  Google Scholar 

  • Hayes, J.D., Judah, D.J., McLellan, L.I. and Neal, G.E., 1991. Contribution of the glutathione S-transferases to the mechanisms of resistance to aflatoxin B1. Pharmacology and Therapeutics, 50, 443–472

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa, M., Maki, T. and Satoh, T., 1987. Multiplicity and regulation of hepatic microsomal carboxylesterases in rats. Molecular Pharmacology, 31, 579–584

    CAS  PubMed  Google Scholar 

  • Hsieh, C.H., Liu, L.F., Tsai, S.P. and Tam, M.F., 1999. Characterization and cloning of avian hepatic glutathione S-transferases. Biochemical Journal, 343, 87–93

    Article  CAS  PubMed  Google Scholar 

  • Jakanovic, M., 2001. Biotransformation of organophosphorus compounds. Toxicology, 166, 139–160

    Google Scholar 

  • Juskevich, J.C., 1987. Comparative metabolism in food-producing animals: programs sponsored by the centre for veterinary medicine. Drug Metabolism Reviews, 18, 345–362

    CAS  PubMed  Google Scholar 

  • Kaddouri, M., Larrieu, G., Eeckhoutte, C. and Galtier, P., 1990. The development of drug-metabolizing enzymes in female sheep livers. Journal of Veterinary Pharmacology and Therapeutics, 13, 340–349

    CAS  PubMed  Google Scholar 

  • Ketterer, B. and Mulder, G.J., 1990. Glutathione conjugation, In: Mulder G.J. (ed.), Conjugation Reactions in Drug Metabolism, (Taylor and Francis, London), 307–364

    Google Scholar 

  • Kuilman, M.E.M., Maas, R.F.M. and Fink-Gremmels, J., 2000. Cytochrome P450-mediated metabolism and cytotoxicity of aflatoxin B1 in bovine hepatocytes. Toxicology in Vitro, 14, 321–327

    Article  CAS  PubMed  Google Scholar 

  • Lakritz, J., Winder, B.S., Noorouz-Zadeh, J., Huang, T.L., Buckpitt, A.R., Hammock, B.D. and Plopper, C.G., 2000. Hepatic and pulmonaryenzyme activities in horses. American Journal of Veterinary Research, 61, 152–157

    CAS  PubMed  Google Scholar 

  • Levy, G.N. and Weber, W.W., 2002. Arylamine acetyltransferases. In: Costas, I. (ed.), Enzyme Systems That Metabolise Drugs and Other Xenobiotics, (Wiley, Chichester), 441–458

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.R. and Randall, R.J., 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275

    CAS  PubMed  Google Scholar 

  • Meyer, U.A. and Zanger, U.M., 1997. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annual Review of Pharmacology and Toxicology, 37, 269–296

    Article  CAS  PubMed  Google Scholar 

  • Nebbia, C., 2001. Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Veterinary Journal, 161, 238–252

    Article  CAS  Google Scholar 

  • Nebbia, C., Dacasto, M., Rossetto Giaccherino, A., Giuliano Albo, A. and Carletti, M., 2003. Comparative expression of liver cytochrome P450-dependent monooxygenases in the horse and in other agricultural and laboratoryspecies. The Veterinary Journal, 165, 53–64

    Article  CAS  PubMed  Google Scholar 

  • Nebbia, C., Dacasto, M. and Carletti, M., 2004. Postnatal development of hepatic oxidative, hydrolytic and conjugative drug-metabolizing enzymes in female horses. Life Sciences, 74, 1605–1619

    Article  CAS  PubMed  Google Scholar 

  • Nousiainen, U., Törronen, T. and Hanninen, O., 1984. Differential induction of various carboxylesterases by certain polycyclic aromatic hydrocarbons in the rat. Toxicology, 32, 243–251

    Article  CAS  PubMed  Google Scholar 

  • Primiano, T. and Novak, R.F., 1993. Purification and characterization of class mu glutathione S-transferase isozymes from rabbit hepatic tissue. Archives of Biochemistry and Biophysics, 301, 404–410

    Article  CAS  PubMed  Google Scholar 

  • Radominska-Pandya, A., Czernik, P.J., Little, J.M., Battaglia, E. and Mackenzie, P.I., 1999. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metabolism Reviews, 31, 817–899

    Article  CAS  PubMed  Google Scholar 

  • Roumi, P., Anglade., P., Debrauwer, L. and Tulliez, J., 1996. Characterization of pig liver glutathione S-transferases using HPLC–elecrotrospray-ionization mass spectrometry. Biochemical Journal, 317, 879–884

    Google Scholar 

  • Satoh, T. and Hosokawa, M., 1995. Molecular aspects of carboxylesterase isoforms in comparison with other esterases. Toxicology Letters, 82–83, 439–445

    PubMed  Google Scholar 

  • Schmid, A. and Schmid, H., 1994. Metabolism of drugs and poisons in the horse. Revue de Médicine Vétérinaire, 145, 485–492

    CAS  Google Scholar 

  • Sheehan, D., Meade, G., Foley, V.M. and Dowd, C.A., 2001. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 360, 1–16

    Article  CAS  PubMed  Google Scholar 

  • Sherratt, P.J. and Hayes, J.D., 2002. Glutathione S-transferase. In: Costas, I. (ed.), Enzyme Systems That Metabolise Drugs and Other Xenobiotics, (Wiley, Chichester), 319–352

    Google Scholar 

  • Short, C.R., Flory, W., Hsieh, L.C., Aranas, T., Ou, S.P. and Weissinger, J., 1988. Comparison of hepatic drug metabolizing enzyme activities in several agricultural species. Comparative Biochemistry and Physiology, 91C, 419–424

    CAS  Google Scholar 

  • Sivapathasundaram, S., Sauer, M. and Ioannides, C., 2003. Xenobiotic conjugation systems in deer compared with cattle and rat. Comparative Biochemistry and Physiology C, 134, 169–173

    Google Scholar 

  • Trepanier, L.A., Ray, K., Winard, N.J., Spielberg, S.P. and Cribb, A.E., 1997. Cytosolic arylamine N-acetyltransferase (NAT) deficiency in the dog and other canids due to an absence of NAT genes. Biochemical Pharmacology, 54, 73–80

    Article  CAS  PubMed  Google Scholar 

  • Ugazio, G., Burdino, E., Dacasto, M., Bosio, A., van't Klooster, G. and Nebbia, C., 1993. Induction of hepatic drug metabolizing enzymes and interaction with carbon tetrachloride in rats after a single oral exposure to atrazine. Toxicology Letters, 69, 279–288

    Article  CAS  PubMed  Google Scholar 

  • Van Duijkeren E., Vulto, A.G. and Van Miert, A.S.J.P.A.M., 1994. Trimethoprim/sulfonamide combinations in the horse: a review. Journal of Veterinary Pharmacology and Therapeutics, 17, 64–73

    CAS  PubMed  Google Scholar 

  • Watkins, J.B. III and Klaassen, C.D., 1986. Xenobiotic biotransformation in livestock: comparison to other species commonly used in toxicity testing. Journal of Animal Science, 63, 933–942

    PubMed  Google Scholar 

  • Zemaitis, M.A. and Greene, F.E., 1979. In vivo and in vitro effects of thiuram-disulfides and dithiocarbamates on hepatic microsomal drug metabolism in the rat. Toxicology and Applied Pharmacology, 48, 343–350

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nebbia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusson, F., Carletti, M., Albo, A.G. et al. Comparison of Hydrolytic and Conjugative Biotransformation Pathways in Horse, Cattle, Pig, Broiler Chick, Rabbit and Rat Liver Subcellullar Fractions. Vet Res Commun 30, 271–283 (2006). https://doi.org/10.1007/s11259-006-3247-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-006-3247-y

Keywords

Navigation