Skip to main content
Log in

Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Tropical forests are paramount in regulating the global carbon cycle due to the storage of large amounts of carbon in their biomass. Using repeat censuses of permanent plots located at 15 sites in the Andes Mountains of northwest Colombia, we evaluate: (1) the relationship between aboveground biomass (AGB) stocks, AGB dynamics (mortality, productivity, and net change), and changes in temperature across a ca. 3000-m elevational gradient (≈ 16.1 °C); (2) how AGB mortality and AGB productivity interact to determine net AGB change; and (3) the extent to which either fine-grain (0.04-ha) or coarse-grain (1-ha) processes determine the AGB dynamics of these forests. We did not find a significant relationship between elevation/temperature and biomass stocks. The net AGB sequestered each year by these forests (2.21 ± 0.51 Mg ha−1 year−1), equivalent to approximately 1.09% of initial AGB, was primarily determined by tree growth. Both forest structural properties and global warming influenced AGB mortality and net change. AGB productivity increases with greater inequality of tree sizes, a pattern characteristic of forest patches recovering from disturbances. Overall, we find that global warming is triggering directional changes in species composition by thermophilization via increased tree mortality of species in the lower portions of their thermal ranges and that the inclusion of small-scale forest structural changes can effectively account for endogenous processes such as changes in forest structure. The inclusion of fine-grain processes in assessments of AGB dynamics could provide additional insights about the effects that ongoing climate change has on the functioning of tropical montane forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asner GP, Anderson CB, Martin RE, Knapp DE, Tupayachi R, Sinca F, Malhi Y (2014) Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient. Biogeosciences 11:843–856

    Article  Google Scholar 

  • Báez S, Malizia A, Carilla J, Blundo C, Aguilar M, Aguirre N et al (2015) Large-scale patterns of turnover and basal area change in Andean forests. PLoS ONE 10:e0126594

    Article  Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–348

    Article  CAS  Google Scholar 

  • Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic approach. Springer, New York

    Book  Google Scholar 

  • Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S et al (2008) Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol 6:455–462

    Article  CAS  Google Scholar 

  • Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Change Biol 20:3177–3190

    Article  Google Scholar 

  • Chazdon RL (2008) Chance and determinism in tropical forest succession. In: Carson SA, Schnitzer WP (eds) Tropical forest community ecology. Wiley, Oxford, pp 384–408

    Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA et al (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224

    Article  Google Scholar 

  • Clark DA (2007) Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward. Biotropica 39:4–19

    Article  Google Scholar 

  • Clark JS, Bell DM, Kwit MC, Zhu K (2014) Competition-interaction landscapes for the joint response of forests to climate change. Glob Change Biol 20:1979–1991

    Article  Google Scholar 

  • Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G et al (2004) Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J Trop Ecol 20:51–72

    Article  Google Scholar 

  • Coomes DA, Allen RB (2007) Mortality and tree-size distributions in natural mixed-age forests. J Ecol 95:27–40

    Article  Google Scholar 

  • Cordonnier T, Kunstler G (2015) The Gini index brings asymmetric competition to light. Perspect. Plant Ecol Evol Syst 17:107–115

    Article  Google Scholar 

  • Core Team R (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Culmsee H, Leuschner C, Moser G, Pitopang R (2010) Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. J Biogeogr 37:960–974

    Article  Google Scholar 

  • Cuni-Sanchez A, Pfeifer M, Marchant R, Calders K, Sørensen CL, Pompeu PV et al (2017) New insights on above ground biomass and forest attributes in tropical montane forests. For Ecol Manag 399:235–246

    Article  Google Scholar 

  • Duque A, Stevenson PR, Feeley KJ (2015) Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proc Natl Acad Sci 112:10744–10749

    Article  CAS  Google Scholar 

  • Duque A, Saldarriaga J, Meyer V, Saatchi S (2017) Structure and allometry in tropical forests of Chocó, Colombia. For Ecol Manag 405:309–318

    Article  Google Scholar 

  • Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG, Malhi Y et al (2011) Upslope migration of Andean trees. J Biogeogr 38:783–791

    Article  Google Scholar 

  • Feeley KJ, Hurtado J, Saatchi SS, Silman MR, Clark DB (2013) Compositional shifts in Costa Rican forests due to climate-driven species migrations. Glob Change Biol 19:3472–3480

    Google Scholar 

  • Feldpausch TR, Lloyd J, Lewis SL, Brienen RJW, Gloor M, Monteagudo Mendoza A et al (2012) Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9:3381–3403

    Article  Google Scholar 

  • Fisher JI, Hurtt GC, Thomas RQ, Chambers JQ (2008) Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol Lett 11:554–563

    Article  Google Scholar 

  • Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huaraca Huasco W, Durand L et al (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16:3176–3192

    Article  Google Scholar 

  • Girardin CAJ, Espejob JES, Doughty CE, Huasco WH, Metcalfe DB, Durand-Baca L et al (2014) Productivity and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. Plant Ecol Divers 7:107–123

    Article  Google Scholar 

  • Hemp A, Zimmermann R, Remmele S, Pommer U, Berauer B, Hemp C, Fischer M (2017) Africa’s highest mountain harbours Africa’s tallest trees. Biodivers Conserv 26:103–113

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Körner C (2017) A matter of tree longevity. Science 355:130–131

    Article  Google Scholar 

  • Larjavaara M (2014) The world’s tallest trees grow in thermally similar climates. New Phytol 202:344–349

    Article  Google Scholar 

  • Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF (2009) Changing ecology of tropical forests: evidence and drivers. Annu Rev Ecol Evol Syst 40:529–549

    Article  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  CAS  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf8957

    Article  Google Scholar 

  • Malagón CD (2003) Ensayo sobre tipología de suelos Colombianos–énfasis en génesis y aspectos ambientales. Rev Acad Colomb Cienc 27:319–341

    Google Scholar 

  • Malhi Y, Girardin CAJ, Goldsmith GR, Doughty CE, Salinas N, Metcalfe DB et al (2017) The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol 214:1019–1032

    Article  CAS  Google Scholar 

  • Marshall AR, Willcock S, Platts PJ, Lovett JC, Balmford A, Burgess ND et al (2012) Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biol Conserv 154:20–33

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  • Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, New York

    Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF et al (2004) Pattern and process in Amazon tree turnover, 1976–2001. Philos Trans R Soc B Biol Sci 359:381–407

    Article  CAS  Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos Trans R Soc B Biol Sci 363:1819–1827

    Article  Google Scholar 

  • Phillips OL, Aragão LEOC, Lewis SL, Fisher JB, Lloyd J, López-González G et al (2009) Drought sensitivity of the Amazon rainforest. Science 323:1344–1347

    Article  CAS  Google Scholar 

  • Pitman NCA, Widmer J, Jenkins CN, Stocks G, Seales L, Paniagua F, Bruna EM (2011) Volume and geographic distribution of ecological research in the Andes and the Amazon, 1995–2008. Trop Conserv Sci 4:64–81

    Article  Google Scholar 

  • Prado-Junior JA, Schiavini I, Vale VS, Arantes CS, van der Sande MT, Lohbeck M, Poorter L (2016) Conservative species drive biomass productivity in tropical dry forests. J Ecol 104:817–827

    Article  Google Scholar 

  • Ramírez JF, Arango DA, Duque A (2015) Thinning effect on Euterpe oleracea population dynamics in the Choco biogeographic region of Colombia. Trees 29:1177–1185

    Article  Google Scholar 

  • Réjou-Méchain M, Tanguy A, Piponiot C, Chave J, Hérault B (2017) BIOMASS: an r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol Evol 8:1163–1167

    Article  Google Scholar 

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W et al (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9904

    Article  CAS  Google Scholar 

  • Spracklen DV, Righelato R (2014) Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11:2741–2754

    Article  CAS  Google Scholar 

  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG et al (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93

    Article  CAS  Google Scholar 

  • Sullivan MJP, Talbot J, Lewis SL, Phillips OL, Qie L, Begne SK et al (2017) Diversity and carbon storage across the tropical forest biome. Sci Rep 7:39102

    Article  CAS  Google Scholar 

  • Sullivan MJP, Lewis SL, Hubau W, Qie L, Baker TR, Banin LF et al (2018) Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol Evol 9:1179–1189

    Article  Google Scholar 

  • Sumanta B (2007) Relationship between size hierarchy and density of trees in a tropical dry deciduous forest of western India. J Veg Sci 18:389–394

    Article  Google Scholar 

  • Talbot J, Lewis SL, Lopez-Gonzalez G, Brienen RJW, Monteagudo A, Baker TR et al (2014) Methods to estimate aboveground wood productivity from long-term forest inventory plots. For Ecol Manag 320:30–38

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474

    Google Scholar 

  • Tyukavina A, Hansen MC, Potapov PV, Krylov AM, Goetz SJ (2016) Pan-tropical hinterland forests: mapping minimally disturbed forests. Glob Ecol Biogeogr 25:151–163

    Article  Google Scholar 

  • Unger M, Homeier J, Leuschner C (2012) Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 170:263–274

    Article  Google Scholar 

  • Vandermeer J, Goldberg D (2003) Elementary population ecology. Princeton University Press, Princeton

    Google Scholar 

  • Venter M, Dwyer J, Dieleman W, Ramachandra A, Gillieson D, Laurance S et al (2017) Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea. Glob Change Biol 23:4873–4883

    Article  Google Scholar 

  • Weiner J (1990) Asymetric competition in plant populations. Trends Ecol Evol 5:360–364

    Article  CAS  Google Scholar 

  • Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560

    Article  Google Scholar 

  • Zeileis A (2015) Ineq: measuring inequality, concentration, and poverty. R Package. http://CRAN.R-project.org/package=ineq

  • Zhang J, Huang S, He F (2015) Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc Natl Acad Sci 112:4009–4014

    Article  CAS  Google Scholar 

  • Zuleta D, Duque A, Cardenas D, Muller-Landau HC, Davies S (2017) Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98:2538–2546

    Article  Google Scholar 

Download references

Acknowledgements

A.D. is supported by Agreement 312 established between Jardín Botánico “Joaquín Antonio Uribe” de Medellín and Helvetas Swiss Intercooperation (Peru), which includes the participation of the Universidad Nacional de Colombia Sede Medellín. K.J.F. is supported by the US National Science Foundation (DEB-1350125) and a grant from the Helvetas Swiss Intercooperation. Comments from two anonymous reviewers helped to significantly improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Duque.

Additional information

Communicated by Jan Wunder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña, M.A., Feeley, K.J. & Duque, A. Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecol 219, 1481–1492 (2018). https://doi.org/10.1007/s11258-018-0895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-018-0895-2

Keywords

Navigation