Skip to main content
Log in

Germination response to various temperature regimes of four Mediterranean seeder shrubs across a range of altitudes

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In dry-summer seasonal climates, the beginning of the rainy season can prompt germination under different temperatures, depending on altitude. Understanding germination responses to temperature with altitude is important in fire-prone environments for species regenerating after fire from seeds (seeders), particularly under changing climate. Here we investigated the role of temperature in four Mediterranean seeder shrubs from Central Spain. Seeds from 17 sites (285–1,253 m altitude), of two hard-seeded nanophanerophytes (Cistus ladanifer and C. salviifolius) and two soft-seeded chamaephytes (Lavandula pedunculata and Thymus mastichina) were investigated. Intact and heat shock treated seeds were set to germinate under four temperature regimes, including a treatment simulating future warming. GLM with binomial or gamma functions were used to test treatment effects using altitude as a covariate. Altitude was a significant covariate only in L. pedunculata. Temperature did not affect final germination in either Cistus, but it significantly affected T. mastichina, and interacted with altitude in L. pedunculata, whereby the higher the altitude the less it germinated with decreasing temperature. Germination speed (T50) was lower at colder temperatures in all but C. salviifolius that was insensitive to our treatments. Heat shock significantly increased final germination in both Cistus and T. mastichina, but did not interact with temperature or altitude. We conclude that germination response to temperature, including varying sensitivity with altitude, differed among these species; thus, changes in the timing of the onset of the rainy season will diversely affect populations at various altitudes. We discuss our results in a context of changing climate and fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1992) Information theory and an extension of the maximum likelihood principle. In: Kotz S, Johnson N (eds) Breakthroughs in statistics, vol 1. Springer, London, pp 610–624

    Chapter  Google Scholar 

  • Angosto T, Matilla AJ (1993) Variations in seeds of three endemic leguminous species at different altitudes. Physiol Plant 87:329–334

    Article  CAS  Google Scholar 

  • Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Baskin CC, Baskin JM (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol 15:139–152

    Article  Google Scholar 

  • Bell DT, Plummer JA, Taylor SK (1993) Seed germination ecology in southwestern Western Australia. Botan Rev 59:24–73

    Article  Google Scholar 

  • Cavieres LA, Arroyo MTK (2001) Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae). Altitudinal variation in the Mediterranean Andes of central Chile. Plant Ecol 149:1–8

    Article  Google Scholar 

  • Céspedes B, Torres I, Urbieta IR, Moreno JM (2012) Effects of changes in the timing and duration of the wet season on the germination of the soil seed bank of a seeder-dominated Mediterranean shrubland. Plant Ecol 213:919–931

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Regional climate projections, Chap. 11. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 847–940

    Google Scholar 

  • Cochrane A, Daws MI, Hay FR (2011) Seed-based approach for identifying flora at risk from climate change. Aust Ecol 36:923–935

    Article  Google Scholar 

  • Corral R, Pita JM, Pérez-García F (1990) Some aspects of seed germination in four species of Cistus L. Seed Sci Technol 18:321–325

    Google Scholar 

  • De Luis M, Verdú M, Raventós J (2008) Early to rise makes a plant healthy, wealthy and wise. Ecology 89:3061–3071

    Article  Google Scholar 

  • Donohue K (2002) Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83:1006–1016

    Article  Google Scholar 

  • Espigares T, Peco B (1993) Mediterranean pasture dynamics: the role of germination. J Veg Sci 4:189–194

    Article  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fuentes-Molina N, Estrelles E (2005) Respuesta germinativa de Brassica repanda (Wild.) DC. subsp maritima (Wilk.) Heywood., Lavandula pedunculata (Mill) Cav. y Silene cambessedesii Boiss. and Reut. Anales de Biología 27:63–68

    Google Scholar 

  • Galmés J, Medrano H, Flexas J (2006) Germination capacity and temperature dependence in Mediterranean species of the Balearic Islands. Investigación Agraria: Sistemas y Recursos Forestales 15:88–95

    Google Scholar 

  • Gilfedder L, Kirkpatrick JB (1994) Genecological variation in the germination, growth and morphology of four populations of a Tasmanian endangered perennial daisy, Leucochrysum albicans. Aust J Bot 42:431–440

    Article  Google Scholar 

  • Giménez-Benavides L, Milla R (2013) Comparative germination ecology of two altitudinal vicariant Saxifraga species endemic to the north of Spain. Plant Biol 15:593–600

    Article  PubMed  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Article  Google Scholar 

  • González Bernáldez F (1991) Ecological consequences of the abandonment of traditional land use systems in central Spain. In: Baudry J, Bunce RGH (eds) Land abandonment and its role in conservation. Zaragoza: CIHEAM. Options Méditerranéennes: Série A. Séminaires Méditerranéens (15) pp 23–29

  • International Seed Testing Association (1999) International rules for seed testing. Seed Sci Technol 27: supplement

  • Kadis C, Kounnamas C, Georghiou K (2010) Seed germination and conservation of endemic, rare, and threatened aromatic plants of Cyprus. Israel J Plant Sci 58:251–261

    Article  Google Scholar 

  • Keeley JE (1991) Seed germination and life history syndromes in the California chaparral. Bot Rev 57:81–116

    Article  Google Scholar 

  • Keeley J, Baer-Keeley M (1999) Role of charred wood, heat-shock, and light in germination of postfire phrygana species from the Eastern Mediterranean Basin. Israel J Plant Sci 47:11–16

    Article  Google Scholar 

  • Luna B, Moreno JM (2010) Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol 210:85–95

    Article  Google Scholar 

  • Luna B, Moreno JM, Cruz A, Fernández-González F (2007) Heat-shock and seed germination of a group of Mediterranean plant species growing in a burned area: an approach base on plant functional types. Environ Exp Bot 60:324–333

    Article  Google Scholar 

  • Luna B, Pérez B, Torres I, Moreno JM (2012) Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobotanica 47:17–27

    Article  Google Scholar 

  • Mariko S, Koizumi H, Suzuki JI, Furukawa A (1993) Altitudinal variations in germination and growth responses of Reynoutria japonica populations on Mt Fuji to controlled thermal environment. Ecol Res 8:27–34

    Article  Google Scholar 

  • Matilla A, Gallardo M, Puga-Hermida MI (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Sci Res 15:63–76

    Article  CAS  Google Scholar 

  • McArthur ED, Meyer SE, Weber DJ (1987) Germination rate at low temperature: rubber rabbitbrush population differences. J Range Manag 40:530–533

    Article  Google Scholar 

  • Meyer SE, Allen PS (1999) Ecological genetics of seed germination regulation in Bromus tectorum L. I. Phenotypic variance among and within populations. Oecologia 120:27–34

    Article  Google Scholar 

  • Mondoni A, Probert R, Graziano R, Hay F, Bonomi C (2008) Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Sci Res 18:213–222

    Article  Google Scholar 

  • Moreira B, Pausas JG (2012) Tanned or burned: the role of fire in shaping physical seed dormancy. PLoS One 7(12):e51523. doi:10.1371/journal.pone.0051523

    Article  PubMed  CAS  Google Scholar 

  • Moreira B, Tormo J, Estrelles E, Pausas JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Ann Bot 105:627–635

    Article  PubMed  CAS  Google Scholar 

  • Moreira B, Tavsanoglu Ç, Pausas JG (2012) Local versus regional intraspecific variability in regeneration traits. Oecologia 168:671–677

    Article  PubMed  CAS  Google Scholar 

  • Moreno JM, Zuazua E, Pérez B, Luna B, Velasco A, Resco de Dios V (2011) Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 8:3721–3732

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2005) Atlas Climático Digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, Bellaterra

    Google Scholar 

  • Ooi MKJ, Auld TD, Denham AJ (2012) Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant Soil 353:289–303

    Article  CAS  Google Scholar 

  • Ortega M, Levassor C, Peco B (1997) Seasonal dynamics of Mediterranean pasture seed banks along environmental gradients. J Biogeogr 24:177–195

    Article  Google Scholar 

  • Pendleton BK, Meyer SE (2004) Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J Arid Environ 59:229–243

    Article  Google Scholar 

  • Pérez-García F (1997) Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecol 133:57–62

    Article  Google Scholar 

  • Pérez-García F, González-Benito ME (2006) Seed germination of five Helianthemum species: effect of temperature and presowing treatments. J Arid Environ 65:688–693

    Article  Google Scholar 

  • Pérez-García F, Hornero J, Gozález-Benito ME (2003) Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Israel J Plant Sci 51:117–124

    Article  Google Scholar 

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In: Fenner T (ed) Seeds: the ecology of regeneration in plant communities, 2nd edn. Cabi Publishing, Oxford, pp 261–292

    Chapter  Google Scholar 

  • Quintana JR, Cruz A, Fernández-González F, Moreno JM (2004) Time of germination and establishment success after fire of three obligate seeders in a Mediterranean shrubland of central Spain. J Biogeogr 31:241–249

    Article  Google Scholar 

  • Ramírez JA, Díaz M (2007) The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. For Ecol Manage 255:1976–1983

    Article  Google Scholar 

  • Santana J, Porto M, Reino L, Beja P (2011) Long-term understory recovery after mechanical fuel reduction in Mediterranean cork oak forests. For Ecol Manage 261:447–459

    Article  Google Scholar 

  • Smith AP (1975) Altitudinal seed ecotypes in the Venezuelan Andes. Am Midl Nat 94:247–250

    Article  Google Scholar 

  • Thanos CA, Doussi MA (1995) Ecophysiology of seed germination in endemic labiates of Crete. Israel J Plant Sci 43:227–237

    Article  Google Scholar 

  • Thanos CA, Georghiou K (1988) Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Heywood and C. salviifolius L. Plant, Cell Environ 11:841–849

    Article  Google Scholar 

  • Thanos CA, Georghiou K, Kadis C, Christina P (1992) Cistaceae: a plant family with hard seeds. Isr J Bot 41:251–263

    Google Scholar 

  • Thanos CA, Kadis CC, Skarou F (1995) Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Sci Res 5:161–170

    Article  Google Scholar 

  • Thompson PA (1970) Germination of species of Caryophyllaceae in relation to their geographical distribution in Europe. Ann Bot 34:427–449

    Google Scholar 

  • Thurling N (1966) Population differentiation in Australian Cardamine. III. Variation in germination response. Aust J Bot 14:189–194

    Article  Google Scholar 

  • Trabaud L, Oustric J (1989) Heat requirement for seed germination of three Cistus species in the garrigue of southern France. Flora 183:250–321

    Google Scholar 

  • Valbuena L, Tárrega R, Luis E (1992) Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. Int J Widland Fire 2:15–20

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the 7th FP of the European Commission (Project FUME, GA243888) and Ministerio de Ciencia e Innovación of Spain (Project SECCIA, CGL 2006-06914). We thank A. Pardo, L. Díaz and A. Velasco for their technical assistance. Dr. P. Ladd and two anonymous reviewers helped us improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Moreno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamorro, D., Luna, B. & Moreno, J.M. Germination response to various temperature regimes of four Mediterranean seeder shrubs across a range of altitudes. Plant Ecol 214, 1431–1441 (2013). https://doi.org/10.1007/s11258-013-0264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-013-0264-0

Keywords

Navigation