Skip to main content
Log in

Trait-related flowering patterns in submediterranean mountain meadows

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The research aims were to identify the flowering pattern and the related functional strategies in submediterranean mountain meadows (central Italy) and understand their relationships with some environmental and community structure variables. The number of flowering shoots per species was counted and environmental data were collected in 40 plots during 2009. Analysis of the species and trait data sets highlighted a flowering pattern and an underlying functional pattern. Dominant species tend to bloom in the central phases of the growing season when no stress acts in the system and a long time is available for plant growth and seed maturation. This kind of species does not need functional strategies allowing the canopy fast pre-emption or the tolerance to drought stress. Non-dominant species have two groups of functional strategies that allow them to share the same flowering period of dominant ones by a different type of space occupation (spatial niche partitioning) or to flower before or after their flowering period (temporal niche partitioning). The functional strategies involved in the temporal niche partitioning have a dual ecological meaning, limiting competition with dominant species by fast growth and seed maturation (e.g., short stature, mobilisation of stored reserves, colonization of unexploited soil niches by clonal growth organs and light seeds) and enabling tolerance to drought stress (e.g., scleromorphic and succulent leaves, persistent green leaves, tap roots) and to the low light availability at the ground level owing to the change of grassland structure (e.g., tall size and upright growth form).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ansquer P, Al Haj Khaled R, Cruz P, Theau J-P, Therond O, Duru M (2009) Characterizing and predicting plant phenology in species-rich grasslands. Grass Forage Sci 64(1):57–70

    Article  Google Scholar 

  • Bazzaz FA (1991) Habitat selection in plants. Am Nat 137:116–130

    Article  Google Scholar 

  • Bloom SA (1981) Similarity indices in community studies: potential pitfalls. Mar Ecol Prog Ser 5:125–128

    Article  Google Scholar 

  • Bolmgren K, Cowan PD (2008) Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north temperate-flora. Oikos 117:424–429

    Article  Google Scholar 

  • Bonan G (2008) Ecological climatology. Concepts and applications, 2nd edn. Cambridge University Press, Cambridge 550 pp

    Google Scholar 

  • Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bradbury IK, Hofstra G (1976) The partitioning of net energy resources in two populations of Solidago canadensis during a single developmental cycle in southern Ontario. Can J Bot 54:2449–2456

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, Wien, New York 865 pp

    Book  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27(4):325–349

    Article  Google Scholar 

  • Bullock JM, Franklin J, Stevenson MJ, Silvertown J, Coulson SJ, Gregory SJ, Tofts R (2001) A plant trait analysis of responses to grazing in a long-term experiment. J Appl Ecol 38(2):253–267

    Article  Google Scholar 

  • Catorci A, Gatti R, Ballelli S (2007) Studio fitosociologico della vegetazione delle praterie montane dell’Appennino maceratese. In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:101–143

  • Catorci A, Ottaviani G, Cesaretti S (2011) Functional and coenological changes under different long-term management conditions in Apennine meadows (central Italy). Phytocoenologia 41(1):45–58

    Article  Google Scholar 

  • Catorci A, Ottaviani G, Vitasović Kosić I, Cesaretti S (2012a) Effect of spatial and temporal patterns of stress and disturbance intensities in a sub-Mediterranean grassland. Plant Biosyst 146(2):352–367. doi:10.1080/11263504.2011.623192

  • Catorci A, Gatti R, Cesaretti S (2012b) Effect of sheep and horse grazing on species and functional composition of sub-Mediterranean grasslands. Appl Veg Sci. doi:10.1111/j.1654-109X.2012.01197.x

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Ann Rev Ecol Syst 13:229–259

    Article  Google Scholar 

  • Chapin FS III, Autumn K, Pugnaire F (1993) Evolution of suites of traits in response to environmental stress. Am Nat 142:S78–S92

    Article  Google Scholar 

  • Cole BJ (1981) Overlap, regularity, and flowering phenologies. Am Nat 117:993–997

    Article  Google Scholar 

  • Dalaka A, Sgardelis SP (2006) Life strategies and spatial arrangement of grasses in a Mediterranean ecosystem in Greece. Grass Forage Sci 61:218–231

    Article  Google Scholar 

  • de Bello F, Lepš J, Sebastià M-T (2005) Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J Appl Ecol 42:824–833

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304

    Google Scholar 

  • Du G, Qi W (2010) Trade-offs between flowering time, plant height, and seed size within and across 11 communities of aQingHai-Tibetan flora. Plant Ecol 209:321–333

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22:432–439

    Article  PubMed  Google Scholar 

  • Friedman D, Alpert P (1991) Reciprocal transport between ramets increases growth in Fragaria chiloensis when light and nitrogen occur in separate patches but only if patches are rich. Oecologia 86:76–80

    Article  Google Scholar 

  • Gatti R, Carotenuto L, Catorci A (2007a) Sinfenologia di alcuni syntaxa prativi dell’Appennino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:179–202

  • Gatti R, Vitanzi A, Cesaretti S, Catorci A (2007b) Contributo alla quantificazione della fitomassa epigea di alcuni pascoli dell’Appennino umbro-marchigiano (Italia centrale). In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:255–266

  • Golluscio RA, Oesterheld M, Aguiar MR (2005) Relationship between phenology and life form: a test with 25 Patagonian species. Ecography 28:273–282

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, New York 417 pp

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London 742 pp

    Google Scholar 

  • Hadley EB, Bliss LC (1964) Energy relationships of alpine plants on Mt. Washington, New Hampshire. Ecol Monogr 34(4):331–357

    Article  Google Scholar 

  • Harris W (2001) Formulation of pasture seed mixtures with reference to competition and succession in pastures. In: Tow PG, Lazenby A (eds) Competition and succession in pastures. CABI, Wallingford, UK, pp 149–174

    Chapter  Google Scholar 

  • Heinrich B (1976) Flowering phenologies: bog, woodland, and disturbed habitats. Ecology 57:890–899

    Article  Google Scholar 

  • Klimešová J, Klimeš L (2006) CLO-PLA3: a database of clonal growth architecture of Central European plants. http://clopla.butbn.cas.cz and http://clopla.butbn.cas.cz/. Accessed 20 March 2011

  • Klotz S, Kühn I, Durka W (2002) Biolflor: Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bonn, Bundesamt für Naturschutz. http://www.ufz.de/biolflor/index.jsp. Accessed 20 March 2011

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revising the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Roumet C, Urcelay C (2007) Plant functional types: are we getting any closer to the Holy Grail? In: Canadell J, Pitelka LF, Pataki D (eds) Terrestrial ecosystems in a changing world. The IGBP series. Springer, New York, pp 171–186

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. 2nd English ed. Elsevier, Amsterdam, NL, p 853

    Google Scholar 

  • Losvik MH (1991) A hay meadow in western Norway changes in course of a growing season. Nord J Bot 11:577–586

    Article  Google Scholar 

  • Martínková J, Šmilauer P, Mihulka S (2002) Phenological pattern of grassland species: relation to the ecological and morphological traits. Flora 197:290–302

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon 300 pp

    Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data. Version 5. MjM Software Design. Gleneden Beach, Oregon

  • McMaster GS, Wilhelm W (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Article  Google Scholar 

  • Moles AT, Westoby M (2006) Seed size and plant strategy across the whole life cycle. Oikos 113:91–105

    Article  Google Scholar 

  • Moles AT, Hodson DW, Webb CJ (2000) Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89:541–545

    Article  Google Scholar 

  • Moles AT, Falster DS, Leishman MR et al (2004) Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J Ecol 92:384–396

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package v. 1.17–9. http://CRAN.R-project.org/package=vegan. Accessed 10 April 2011

  • Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625

    Article  PubMed  Google Scholar 

  • Pieruccini P (2007) Suoli e geomorfologia delle praterie montane dell’Appennino Umbro-Marchigiano. In: Catorci A, Gatti R (eds) Le praterie montane dell’Appennino maceratese. Braun-Blanquetia 42:19–36

  • Pignatti S (1982) Flora d’Italia. Voll. 1–3. Bologna, Edagricole, p 2302

    Google Scholar 

  • Poole RW, Rathcke BJ (1979) Regularity, randomness, and aggregation in flowering phenologies. Science 203:470–471

    Article  PubMed  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org. Accessed 20 March 2011

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol Syst 16:179–214

    Article  Google Scholar 

  • Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide Bioclimatic Classification System, Phytosociological Research Center, Spain. http://www.globalbioclimatics.org. Accessed 20 March 2011

  • Roff DA (2002) Life history evolution. Sinauer, Sunderland, MA 527 pp

    Google Scholar 

  • Schmid B (1986) Spatial dynamics and integration within clones of grassland perennials with different growth form. Proc Roy Soc London Ser B, Biol Sci 228:173–186

    Article  Google Scholar 

  • SPSS Inc. (1997) SPSS for Windows. Version 8.0, Chicago, USA

  • Sun S, Frelich LE (2011) Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. J Ecol 99:991–1000

    Article  Google Scholar 

  • Thomson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241

    Article  Google Scholar 

  • Tissue DT, Nobel PS (1988) Parent-ramet connections in Agave desert: influences of carbohydrates on growth. Oecologia 75:266–271

    Article  Google Scholar 

  • van Calster H, Hendels P, Antonio K, Verheyen K, Hermy M (2008) Coppice management effects on experimentally established populations of three herbaceous layer woodland species. Biol Conserv 141:2641–2652

    Article  Google Scholar 

  • Vile D, Shipley B, Garnier E (2006) A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87:504–517

    Article  PubMed  Google Scholar 

  • Weiher E, van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Whalley RDB, Hardy MB (2000) Measuring botanical composition of grasslands. In: Jones RM (ed) Field and laboratory methods for grassland and animal production research. Oxford University Press, USA, pp 67–102

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by University Funds Research (F.A.R.) assigned to Prof. Catorci Andrea. The authors would like to thank the Osservatorio Geofisico Sperimentale of Macerata for having provided data from the Pintura di Bolognola meteorological station, and Sheila Beatty for linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Maria Tardella.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 15 kb)

Supplementary material 2 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catorci, A., Cesaretti, S., Gatti, R. et al. Trait-related flowering patterns in submediterranean mountain meadows. Plant Ecol 213, 1315–1328 (2012). https://doi.org/10.1007/s11258-012-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-012-0090-9

Keywords

Navigation