Skip to main content

Advertisement

Log in

Hail impact on leaves and endophytes of the endemic threatened Coccoloba cereifera (Polygonaceae)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

There is increasing evidence that some natural disturbances are increasing in frequency and intensity with global change, but the effects of these changes on plant populations is poorly understood. It is estimated that for every 1°C increase in the summer mean minimum temperature, there is a 40% increase in hail damage. Severe hailstorms can cause large impacts on biological communities. In 2008, a strong hailstorm hit the speciose and endemic rupestrian vegetation in Serra do Cipó, Brazil. This event prompted us to record its effects on the narrowly distributed and threatened species Coccoloba cereifera (Polygonaceae). About 33 to 60% of the leaves on the 246 individuals surveyed were lost. The disturbance also influenced some of the physiological traits of C. cereifera, increasing the concentration of photosynthetic pigments (chlorophyll and carotenoid) and polyphenols in the leaves. The most pronounced increase of chlorophyll was in young leaves (ca. 60%). Carotenoid content increased by ca. 50% in all leaf ages, while polyphenols increased tenfold. Contrarily, the endophyte richness decreased drastically after the event (from 104 to 33 species), only 12% of similar species remain. The hail storm strongly influenced all variables evaluated in this study, i.e., structure, physiology, and associated fungi. These results show that hailstorm had a dramatic and immediate impact on C. cereifera and may also severely affect other endemic or threatened plant species. Therefore, it is imperative that we broaden our knowledge on global climate change impacts for the conservation of native species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arnold AE, Herre EA (2003) Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia 95:388–398

    Article  PubMed  Google Scholar 

  • Berlato MA, Melo RW, Fontana DC (2000) Risco de ocorrência de granizo no Estado do Rio Grande do Sul. Rev Bras Agrometeorol 8:121–132

    Google Scholar 

  • Biolley JP, Lauga B, Cagnon C, Duran R, Salvado JC, Goulas P (1998) Phenolic pattern of bean (Phaseolus vulgaris L.) as an indicator of chronic ozone stress. Water Air Soil Pollut 106:355–368

    Article  CAS  Google Scholar 

  • Breshears DD, Huxman TE, Adams HD, Zou CB, Davison JE (2008) Vegetation synchronously leans upslope as climate warms. Proc Natl Acad Sci 105:11591–11592

    Article  PubMed  CAS  Google Scholar 

  • Dale VH, Joyce LA, Mcnulty S et al (2001) Climate change and forest disturbances. BioScience 51:723–734

    Article  Google Scholar 

  • Dwyer LM, Ma BL, Evenson L, Hamilton RI (1994) Maize physiological traits related to grain yield and harvest moisture in mid-to short-season environments. Crop Sci 34:985–992

    Article  Google Scholar 

  • Espinosa-Garcia FJ, Langenheim JH (1990) The endophytic fungal community in leaves of a coastal redwood population—diversity and spatial patterns. New Phytol 116:89–97

    Article  Google Scholar 

  • Fisher PJ, Petrini O, Lappin-Scott HM (1992) The distribution of some fungal and bacteria endophytes in maize (Zea mays L.). New Phytol 122:299–305

    Article  Google Scholar 

  • Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista de espécies. Boletim de Botânica 9:11–151

    Google Scholar 

  • Hammerschmidt R (2005) Phenols and plant-pathogen interactions: the saga continues. Physiol Mol Plant Pathol 66:77–78

    Article  Google Scholar 

  • Harborne JB (1989) General procedures and measurement of total phenolics. In: Dey PM, Harborne JB (eds) Methods in plant biochemistry, plant phenolics, vol 1. Academic Press, New York, pp 1–28

    Google Scholar 

  • Holden M (1976) Chlorophylls. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, New York, pp 6–9

    Google Scholar 

  • Houston WA (1999) Severe hail damage to mangroves at Port Curtis, Australia. Mangroves Salt Marshes 3:29–40

    Article  Google Scholar 

  • Hunter MD, Forkner RE (1999) Hurricane damage influences foliar polyphenolics and subsequent herbivory on surviving trees. Ecology 80:2676–2682

    Article  Google Scholar 

  • Jakopic J, Veberic R, Stampar F (2007) The effect of reflective foil and hail nets on the lighting, color and anthocyanins of Fuji apple. Sci Hortic 115:40–46

    Article  CAS  Google Scholar 

  • Jonasson S, Bryant JP, Chapin FS III, Andersson M (1986) Plant phenols and nutrients in relation to variations in climate and rodent grazing. Am Nat 128:394–408

    Article  CAS  Google Scholar 

  • Jones AL, Aldwinkle HS (1990) Compendium of apple and pear diseases. American Phytopathological Society Press, St. Paul, Minnesota

    Google Scholar 

  • Krebs C (1998) Ecological Metodology. Benjamin/Cummings, Addison-Wesley Educational Publishers, Inc, New York

    Google Scholar 

  • Leite GB, Petri JL, Mondardo M (2002) Efeito da tela antigranizo em algumas características dos frutos de macieira. Rev Brasi Fruticol 24:714–716

    Article  Google Scholar 

  • Leslie LM, Leplastrier M, Buckley BW (2008) Estimating future trends in severe hailstorms over the Sydney Basin: a climate modelling study. Atmospheric Res 87:37–51

    Article  Google Scholar 

  • McMaster HJ (1999) The potential impact of global warming on hail losses to winter cereal crops in New South Wales. Climatic Change 43:455–476

    Article  Google Scholar 

  • Melo E (2000) Polygonaceae da Cadeia do Espinhaço, Brasil. Acta Bot Bras 14:273–300

    Article  Google Scholar 

  • Mendez E (2003) Renewal of the dry weight of Larrea cuneifolia Cav. after a hailstorm in Mendoza, Argentina. J Arid Environ 53:347–350

    Article  Google Scholar 

  • Moreira RG, McCauley RA, Cortés-Palomec AC, Lovato MB, Fernandes GW, Oyama K (2008) Isolation and characterization of microsatellite loci in Coccoloba cereifera (Polygonaceae), an endangered species endemic to the Serra do Cipó, Brazil. Mol Ecol Res 8:854–856

    Article  CAS  Google Scholar 

  • Moreira RG, McCauley RA, Cortés-Palomec AC, Lovato MB, Fernandes GW, Oyama K (2009) Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conserv Genet 11(4):1247–1255. doi:10.1007/s10592-009-9953-6

    Article  Google Scholar 

  • Moriondo M, Orlandini S, Villalobos FJ (2003) Modelling compensatory effects of defoliation on leaf area growth and biomass of sunflower (Helianthus annus L.). Eur J Agron 19:161–171

    Article  Google Scholar 

  • Negreiros D, Fernandes GW, Silveira FAO, Chalub C (2009) Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol 35:301–310

    Article  Google Scholar 

  • Nobre CA (2001) Mudanças climáticas globais: possíveis impactos nos ecossistemas do país. Parcerias Estratégicas 12:239–258

    Google Scholar 

  • Peltzer DA, Wilson SD (2006) Hailstorm damage promotes aspen invasion into grassland. Can J Bot 84:1142–1147

    Article  Google Scholar 

  • Penuelas J, Estiarte M, Kimball BA et al (1996) Variety of responses of plant phenolic concentration to CO2 enrichment. J Exp Bot 47:1463–1467

    Article  CAS  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Ribeiro KT, Fernandes GW (1999) Geographic distribution of Coccoloba cereifera (Polygonaceae), a narrow endemic from Serra do Cipó. Brazil Bios 7:7–12

    Google Scholar 

  • Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218

    Article  Google Scholar 

  • Ribeiro KT, Codeço CT, Fernandes GW (2003) Local and regional spatial distribution of an eruptive and a latent herbivore insect species. Austral Ecol 28:99–107

    Article  Google Scholar 

  • Rizzini CT (1979) Tratado de fitogeografia do Brasil: aspectos sociológicos e florísticos. Hucitec/EDUSP, Sao Paulo

    Google Scholar 

  • Ruhland CT, Fogal MJ, Buyarski CR, Krna MA (2007) Solar ultraviolet-B radiation increases phenolic content and ferric reducing antioxidant power in Avena sativa. Molecules 12:1220–1232

    Article  PubMed  CAS  Google Scholar 

  • Schubert T (1991) Hail damage to plants. Plant Pathol 347:1–2

    Google Scholar 

  • Silva AC, Oliva MA, Vieira MF, Fernandes GW (2008) Trioecy in Coccoloba cereifera Schwacke (Polygonaceae), a narrow endemic and threatened tropical species. Braz Archives of Biol Technol 51:1003–1010

    Article  Google Scholar 

  • Suryanarayanan TS, Thennarasan S (2004) Temporal variation in endophyte assemblages of Plumeria rubra leaves. Fungal Diver 15:197–204

    Google Scholar 

  • Tartachnyk II, Blanke MM (2002) Effect of mechanically-simulated hail on photosynthesis, dark respiration and transpiration of apple leaves. Environ Exp Bot 48:169–175

    Article  Google Scholar 

  • Tartachnyk II, Blanke MM (2008) Temperature, evapotranspiration and primary photochemical responses of apple leaves to hail. J Plant Physiol 165:1847–1852

    Article  PubMed  CAS  Google Scholar 

  • Tartachnyk II, Blanke MM, Jackson MB (2007) Effect of hail on photosynthesis, chlorophyll fluorescence, stomatal closure and evapotranspiration of apple leaves. Acta Hort (ISHS) 732:543–547

    CAS  Google Scholar 

  • Toofanee SB, Dulymamode R (2002) Fungal endophytes associated with Cordemoya integrifolia. Fungal Divers 11:169–175

    Google Scholar 

  • Van Aalst MK (2006) The impacts of climate change on the risk of natural disasters. Disasters 30:5–18

    Article  PubMed  Google Scholar 

  • Viana LR, Fernandes GW, Silva CA (2005) Ecological road threatens endemic Brazilian plant with extinction. Plant Talk 41:15–16

    Google Scholar 

  • Vinet F (2000) Climatology of hail in France. Atmospheric Res 56:309–323

    Article  Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo biosphere. Springer-Verlag, Berlin

    Google Scholar 

  • Whiteside JO, Garnsey SM, Timmer LW (1988) Compendium of citrus diseases. American Phytopathological Society Press, St. Paul, Minnesota

    Google Scholar 

  • Willemse S (1995) A statistical analysis and climatological interpretation of hailstorms in Switzerland, Doctor of Natural Sciences Thesis Dissertation No. 11137, Swiss Federal Institute of Technology, Zurich, p. 176

  • Wolfe JA (1979) Temperature parameters of humid to medic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australia. US Geol Surv Prof Pap 1106:1–37

    Google Scholar 

  • Woodward FI (1987) Climate change and plant distribution. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgments

The authors thank D. Goodsman, D. Negreiros, S. Castro and M. Storquio for their valuable assistance. This research was supported by National Counsel of Technological and Scientific Development (CNPq Proc. 476178/2008-8, 303352/2010-8, 474292/2010-0, 559279/2008-6, 558250/2009-2, 151817/2008-1), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG Proc. APQ 01278-08, EDT 465/07, RDP-00048-10), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Proc. BEX 323710-9, Proc. 02/2009 DRI/CGCI), The Natural Sciences and Engineering Research Council of Canada (NSERC), and the Inter American Institute for Global Change Research (IAI) Collaborative Research Network Program CRN-II funded under the U.S. National Science Foundation Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Wilson Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, G.W., Oki, Y., Sanchez-Azofeifa, A. et al. Hail impact on leaves and endophytes of the endemic threatened Coccoloba cereifera (Polygonaceae). Plant Ecol 212, 1687–1697 (2011). https://doi.org/10.1007/s11258-011-9941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9941-z

Keywords

Navigation