Skip to main content

Advertisement

Log in

Colonization of experimentally created gaps along an alpine successional gradient

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The colonization of artificially created gaps was analyzed along an alpine successional gradient from pioneer to early, late, and old successional stages. The presence/absence of species and the abundances of seedlings and adults in the gaps were recorded and compared with those of the surrounding areas. We hypothesized that in the older successional stages, the gaps were likely to be colonized by clonal ingrowth of the surrounding species. In the younger stages, we expected to find a high presence of seedlings and adults recruited by seeds. Micro-succession in the gaps occurred at each successional stage, with all life forms among the colonizers. The abundance of seedlings was significantly higher in the gaps compared with the surrounding area. At the early and late successional stages, the surrounding areas provided safe sites for seedling establishment, with the abundance of adults recruited by seeds higher at the gap edges than in the gap centers. We can confirm the first hypothesis of a higher clonal ingrowth in the old successional stage. Clonal ingrowth also occurred in the younger successional stages. Despite the lower species richness in the gaps, a positive correlation was found between gap and surrounding species frequencies, which were the highest in the pioneer and the lowest in the old successional stage. We conclude that gaps are relevant for seedling recruitment along the entire primary succession gradient. New species invasions from greater distances were not observed in the gaps. The dominant species on each site were identified to be successful gap colonizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bates DM, DebRoy S (2004) Linear mixed models and penalized least squares. J Multivariate Anal 91:1–17

    Article  Google Scholar 

  • Bates DM, Maechler M (2010) lme 4. Linear mixed-effects models using S4 classes. http://lme4.r-forge.r-project.org/

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    Article  PubMed  CAS  Google Scholar 

  • Björk RG, Molau U (2007) Ecology of alpine snowbeds and the impact of global change. Arct Antarct Alp Res 39:34–43

    Article  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  • Brooker R, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. J Ecol 96:18–34

    Article  Google Scholar 

  • Bullock JM, Hill BC, Silvertown J, Sutton M (1995) Gap colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species. Oikos 72:273–282

    Article  Google Scholar 

  • Callaway RM (2007) Positive interactions and interdependence in plant communities. Springer, Dordrecht

    Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  PubMed  CAS  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA, Munoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226

    Article  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Gomez-Gonzales S, Molina-Montenegro MA (2006) Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phyt 169:59–69

    Article  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156

    Article  Google Scholar 

  • Chambers JC (1995) Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology 76:2124–2133

    Article  Google Scholar 

  • Chapin FS III, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr 64:149–175

    Article  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Core Development Team R (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cullen LE, Stewart GH, Duncan RP, Palmer JG (2001) Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics. J Ecol 89:1061–1071

    Article  Google Scholar 

  • De Witte L, Stöcklin J (2010) Longevity of clonal plants: why it matters and how to measure it. Ann Bot. doi:10.1093/aob/mcq191

  • Dullinger S, Kleinbauer I, Pauli H, Gottfried M, Brooker R, Nagy L, Theurillat JP, Holten JI, Abdaladze O, Benito JL, Borel JL, Coldea G, Ghosn D, Kanka R, Merzouki A, Klettner C, Moiseev P, Molau U, Reiter K, Rossi G, Stanisci A, Tomaselli M, Unterluggauer P, Vittoz P, Grabherr G (2007) Weak and variable relationships between environmental severity and small-scale co-occurrence in alpine plant communities. J Ecol 95:1284–1295

    Article  Google Scholar 

  • Eccles Ns, Esler KJ, Cowling RM (1999) Spatial pattern analysis in Namaqualand desert plant communities: evidence for general positive interactions. Plant Ecol 142:71–85

    Article  Google Scholar 

  • Eriksson O, Ehrlén J (1992) Seed and microsite limitation of recruitment in plant populations. Oecologia 91:360–364

    Article  Google Scholar 

  • Erschbamer B, Pfattner M (2002) Das Keimverhalten von alpinen Arten in der Klimakammer und im Gelände. Ber Nat-Med Ver Innsbruck 89:87–97

    Google Scholar 

  • Erschbamer B, Bitterlich W, Raffl C (1999) Die Vegetation als Indikator für die Bodenbildung im Gletschervorfeld des Rotmoosferners (Obergurgl, Ötztal, Nordtirol). Ber Nat-Med Ver Innsbruck 86:107–122

    Google Scholar 

  • Erschbamer B, Kneringer E, Niederfriniger Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the Central Alps. Flora 196:304–312

    Google Scholar 

  • Erschbamer B, Niederfriniger Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19:855–862

    Article  Google Scholar 

  • Erschbamer B, Anich Ch, Benirschke M, Ganthaler A, Grassmair R, Hasibeder R, Huter V, Konzett D, Lechleitner M, Magauer M, Miller R, Newerkla S, Schneider J, Zeisler B, Schwienbacher E (2010) Das Keimverhalten von 13 alpinen Arten der Familie Asteraceae im Licht und im Dunkeln. Ber Nat-Med Ver Innsbruck 96:73–88

    Google Scholar 

  • Eskelinen A, Virtanen R (2005) Local and regional processes in low-productive mountain plant communities: the roles of seed and microsite limitation in relation to grazing. Oikos 110:360–368

    Article  Google Scholar 

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Finch KR (2008) Diasporenregen im Gletschervorfeld des Rotmoosferners, Obergurgl, Ötztal. Diplomarbeit University, Innsbruck

    Google Scholar 

  • Fischer M, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein, Südtirol. 3. Auf., Biologiezentrum der Oberösterreichischen Landesmuseen, Linz

  • Forbis TA (2003) Seedling demography in an alpine ecosystem. Am J Bot 90:1197–1206

    Article  PubMed  Google Scholar 

  • Forbis TA (2009) Negative associations between seedlings and adult plants in two alpine plant communities. Arct Antarct Alp Res 41:301–308

    Article  Google Scholar 

  • Grubb PJ (1977) The maintenance of specie-richness in plant communties: the importance of the regeneration niche. Biol Rev 52:107–145

    Article  Google Scholar 

  • Gutiérrez-Girón A, Gavilán RG (2010) Spatial patterns and interspecific relations analysis help to better understand species distribution patterns in a Mediterranean high mountain grassland. Plant Ecol 210:137–151

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM, Schuetzenmeister A (2010) multcomp. Simultaneous inference in general parametric models. http://cran.r-project.org/web/packages/multcomp/

  • Jakobsson A, Eriksson O (2000) A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494–502

    Article  Google Scholar 

  • Jumpponen A, Väre H, Mattson KG, Ohtonen R, Trappe JM (1999) Characterization of safe sites for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105

    Article  Google Scholar 

  • Kikvidze Z, Pugnaire FI, Brooker RW, Choler P, Lortie CJ, Michalet R, Callaway RM (2005) Linking patterns and processes in alpine plant communities: a global study. Ecology 86:1395–1400

    Article  Google Scholar 

  • Klanderud K (2010) Species recruitment in alpine plant communities: the role of species interactions and productivity. J Ecol 98:1128–1133

    Article  Google Scholar 

  • Kneringer E (1996) Diasporenregen und Diasporenbank im Gletschervorfeld des Rotmoosferners (Ötztaler Alpen, Tirol). Diplomarbeit Univ, Innsbruck

    Google Scholar 

  • Leck AM, Parker VT, Simpson RL (2008) Why seedlings? In: Leck AM, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 3–13

    Google Scholar 

  • Marcante S, Schwienbacher E, Erschbamer B (2009a) Genesis of a soil seed bank on a primary succession in the Central Alps (Ötztal, Tyrol, Austria). Flora 204:434–444

    Google Scholar 

  • Marcante S, Winkler E, Erschbamer B (2009b) Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory? Ann Bot 103:1129–1143

    Article  PubMed  Google Scholar 

  • Matthews JA (1992) The ecology of recently-deglaciated terrain. A geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  • Mayer R, Erschbamer B (2010) Seedling recruitment and seed-/microsite limitation in traditionally grazed plant communities of the alpine zone. Bas Appl Ecol 12:10–20

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized Linear Models, Second Edition edn. Chapman and Hall, London, p 536

    Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Article  Google Scholar 

  • Munier A, Hermanutz L, Jacobs JD, Lewis K (2010) The interacting effects of temperature, ground disturbance, and herbivory on seedling establishment: implications for treeline advance with climate warming. Plant Ecol 210:19–30

    Article  Google Scholar 

  • Nagl F, Erschbamer B (2010) Vegetation und Besiedlungsstrategien. In: Koch E-M, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University Press, Innsbruck, pp 121–143

    Google Scholar 

  • Niederfriniger Schlag R, Erschbamer B (2000) Germination and establishment of seedlings on a glacier foreland in the Central Alps, Austria. Arct Antarct Alp Res 32:270–277

    Article  Google Scholar 

  • Proulx M, Mazumder A (1998) Reversal of grazing impact on plant species richness in nutrient-poor vs. nutrient-rich ecosystems. Ecology 79:2581–2592

    Article  Google Scholar 

  • Pugnaire FI, Haase P, Puigdefábregas J, Cueto M, Clark SC, Incoll LD (1996) Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain. Oikos 76:455–464

    Article  Google Scholar 

  • Raffl C, Erschbamer B (2004) Comparative vegetation analyses of two transects crossing a characteristic glacier valley in the Central Alps. Phytocoenologia 34:225–240

    Article  Google Scholar 

  • Raffl C, Mallaun M, Mayer R, Erschbamer B (2006) Vegetation succession pattern and diversity changes in a glacier valley, Central Alps, Austria. Arct Antarct Alp Res 38:421–428

    Article  Google Scholar 

  • Ryser P (1993) Influences of neighbouring plants on seedling establishment in limestone grassland. J Veg Sci 4:195–202

    Article  Google Scholar 

  • Shimono A, Washitani I (2004) Seedling emergence patterns and dormancy/germination physiology of Primula modesta in a subalpine region. Ecol Res 19:541–551

    Article  Google Scholar 

  • Silvertown J (1981) Micro-spatial heterogeneity and seedling demography in species rich grassland. New Phytol 88:117–125

    Article  Google Scholar 

  • Silvertown J, Smith B (1988) Gaps in the canopy: the missing dimension in vegetation dynamics. Vegetatio 77:57–60

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison Wesley Publ. Co., Reading, p 688

    Google Scholar 

  • Türk R, Erschbamer B (2010) Die Flechten im Gletschervorfeld des Rotmoosferners. In: Koch E-M, Erschbamer B (eds) Glaziale und periglaziale Lebensräume im Raum Obergurgl. Innsbruck University Press, Innsbruck, pp 155–163

    Google Scholar 

  • Urbanska KM (1997) Restoration ecology research above the timberline: colonization of safety islands on a machine-graded alpine ski run. Biodiv Cons 6:1655–1670

    Article  Google Scholar 

  • Urbanska KM, Fattorini M (1998) Seed bank studies in the Swiss Alps. I. Un-restored ski run and the adjacent intact grassland at high elevation. Bot Helv 108:93–104

    Google Scholar 

  • Urbanska KM, Schütz M, Gasser M (1988) Revegetation trials above timberline–an exercise in experimental population ecology. Veröff Geobot Inst ETH Stift Rübel 54:85–110

    Google Scholar 

  • Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M, Villar L (2003) Patterns in the plant species richness of European high mountain vegetation. In: Nagy L, Grabherr G, Körner Ch, Thompson DBA (eds) Alpine biodiversity in Europe. Springer, Berlin, pp 149–172

    Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Welling P, Tolvanen A, Laine K (2004) The alpine soil seed bank in relation to field seedlings and standing vegetation in Subarctic Finland. Arct Antarct Alp Res 36:229–238

    Article  Google Scholar 

  • Weppler T, Stöcklin J (2005) Variation of sexual and clonal reproduction in the alpine Geum reptans in contrasting altitudes and successional stages. Bas Appl Ecol 6:305–316

    Article  Google Scholar 

Download references

Acknowledgments

The study was funded by the Tiroler Wissenschaftsfonds. The authors thank Barbara Viehweider for helping them with the fieldwork. Language editing was performed by the American Journal Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitta Erschbamer.

Appendix

Appendix

See Table 5.

Table 5 Model summaries containing response variable (bold font), model parameterization and comparisons, sample sizes, variance estimates of random factors, Akaike information criterion (AIC) and likelihood ratio tests on marginal effects of fixed factors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichini, K., Schwienbacher, E., Marcante, S. et al. Colonization of experimentally created gaps along an alpine successional gradient. Plant Ecol 212, 1613–1627 (2011). https://doi.org/10.1007/s11258-011-9934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9934-y

Keywords

Navigation