Skip to main content
Log in

Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Soil is one of the environmental elements to influence Cerrado vegetation. Aluminum toxicity of Cerrado soils is well known, but the importance of water availability is still to be understood, especially in Cerrado under wetter climates. We studied the association between Cerrado physiognomies (cerrado sensu stricto and cerradão) and morphological, chemical, physical, and physical–hydrical soil attributes at southwestern São Paulo State, Brazil. Characterization of soil morphology, classification and sample collection for particle-size distribution, and chemical and water-retention analyses were carried out in 15 permanent plots, where vegetation was characterized floristically and structurally. Simple correlation and canonical correspondence analyses were performed with soil data. Classification of soils (U.S. Soil Taxonomy) with very low clay contents was not able to separate soils under cerradão—forestry physiognomy—from those under cerrado sensu stricto—savannic physiognomy, even though it tends to distinguish soils under greater biomass from those under lower biomass physiognomies. High soil acidity of all studied soils and increased at the sites with greater contents of organic matter, mainly with the cerradão physiognomy, precluded Al toxicity as a cause of the physiognomic gradient within Cerrado. Clay content, microporosity, and residual and saturation moisture were the most significant soil attributes to correlate directly with the cerradão physiognomy, indicating that water availability is the main factor explaining the physiognomic gradient of Cerrado vegetation in a local scale, where climate and soil fertility do not vary spatially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arens K (1963) As plantas lenhosas dos campos cerrados como flora adaptada às deficiências minerais do solo. In: Ferri MG (ed) Simpósio sobre o cerrado 1, Anais, Edgard Blücher, São Paulo, pp 287–303

  • Bognola IA, Joaquim AC, Prado H, Lepsch I, Menk JRF (1996) Carta pedológica semidetalhada do estado de São Paulo: Quadrícula de Assis. Instituto Agronômico, Campinas, SP (Mapa, escala 1:100.000)

  • Brando PM, Durigan G (2004) Changes in cerrado vegetation after disturbance by frost (São Paulo State, Brazil). Plant Ecol 17:205–215

    Google Scholar 

  • Camargo AP (1963) Clima no cerrado. In: Ferri MG (ed) Simpósio sobre o cerrado 1, Anais, Edgard Blücher, São Paulo, pp 287–303

  • Camargo AO, Moniz AC, Jorge JA, Valadares JMAS (1986) Métodos de análise química, mineralógica e física de solos do Instituto Agronômico de Campinas. Instituto Agronômico, Campinas, SP (Boletim Técnico, 106)

  • Canfield RH (1941) Application of the line interception method in sampling range vegetation. J For 39:388–394

    Google Scholar 

  • CEPAGRI (2009) Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura. Clima dos municípios paulistas. http://www.cpa.unicamp.br/outras-informacoes/clima_muni_047.html. Accessed throughout 2010

  • Cooper M, Vidal-Torrado P (2005) Caracterização morfológica, micromorfológica e físico-hídrica de solos com horizonte B nítico. Revista Brasileira de Ciência do Solo 29:581–595

    Article  Google Scholar 

  • Dourado Neto D, Nielsen DR, Hopmans JW, Reichardt K, Bacchi OOS (2000) Software to model soil water retention curves (SWRC version 2.00). Scientia Agricola 57:191–192

    Article  Google Scholar 

  • Durigan G, Ratter JA (2006) Successional changes in cerrado and cerrado/forest ecotonal vegetation in western São Paulo State, Brazil, 1962–2000. Edinburgh J Bot 63(1):119–130

    Article  Google Scholar 

  • Durigan G, Bacic MC, Franco GADC, Siqueira MF (1999) Inventário florístico do cerrado na Estação Ecológica de Assis, SP. Hoehnea 26(2):59–77

    Google Scholar 

  • Faria AJ, Contieri WA, Kawabata M, Berto EA (2004) Monitoramento micrometeorológico em cinco ambientes com cobertura vegetal distinta. In: Boas OV, Durigan G (eds) Pesquisas em conservação e recuperação ambiental no oeste paulista: resultados da cooperação Brasil/Japão. Páginas & Letras, São Paulo, pp 93–108

    Google Scholar 

  • Ferreira ICM, Coelho RM, Torres RB, Bernacci LC (2007) Solos e vegetação nativa remanescente no município de Campinas, SP. Pesquisa Agropecuária Brasileira 42(9):1319–1327

  • Genuchten MTV (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Goodland RA (1971a) A physiognomic analysis of the “cerrado” vegetation of Central Brazil. J Ecol 59(2):411–419

    Article  Google Scholar 

  • Goodland RA (1971b) Oligotrofismo e alumínio no cerrado. In: Ferri MG (Ed) Simpósio sobre o cerrado 3, Anais, Edgard Blücher, São Paulo, SP pp 44–60

  • Goodland RA, Pollard R (1973) The Brazilian cerrado vegetation: a fertility gradient. J Ecol 61(1):219–224

    Article  Google Scholar 

  • Haridasan M (1982) Aluminium accumulation by some cerrado native species of central Brazil. Plant Soil 65:265–273

    Article  CAS  Google Scholar 

  • Haridasan M (2008) Nutritional adaptations of native plants of the cerrado biome in acid soils. Braz J Plant Physiol 20(3):183–195

    Article  Google Scholar 

  • IPT (1981) Instituto de Pesquisas Tecnológicas. Mapa geológico do Estado de São Paulo. Mapa, escala 1:500.000. IPT, São Paulo, SP (Texto explicativo)

  • Juhász CEP, Cursi PR, Cooper M, Oliveira TC, Rodrigues RR (2006) Dinâmica físico-hídrica de uma toposseqüência de solos sob Savana Florestada (Cerradão) em Assis, SP. Revista Brasileira de Ciência do Solo 30:401–412

    Article  Google Scholar 

  • Juhász CEP, Cooper M, Cursi PR, Ketzer AO, Toma RS (2007) Savanna woodland soil micromorphology related to water retention. Scientia Agricola 64(4):344–354

    Article  Google Scholar 

  • Klute A (1986) Water retention: laboratory methods. In: Klute A (ed) Methods of soil analysis: physical and mineralogical methods. American Society of Agronomy, Madison, pp 635–660

    Google Scholar 

  • Lopes AS, Cox FR (1977) Cerrado vegetation in Brazil: an edaphic gradient. Agron J 69:828–883

    Article  Google Scholar 

  • Marimon Júnior BH, Haridasan M (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste do Mato Grosso, Brasil. Acta Botanica Brasilica 19(4):913–926

    Article  Google Scholar 

  • Marimon BS, Lima ES, Duarte TG, Chieregatto LC, Ratter JA (2006) Observations on the vegetation of Northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian forest ecotone. Edinburgh J Bot 63:323–341

    Article  Google Scholar 

  • Minitab 13.0. (2000) Statistical Software

  • Moreno MIC, Schiavini I, Haridasan M (2008) Fatores edáficos influenciando na estrutura de fitofisionomias do cerrado. Caminhos da Geografia 9:173–194

    Google Scholar 

  • Oliveira-Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil. Columbia University Press, New York, pp 91–120

    Google Scholar 

  • Oliveira-Filho AT, Vilela EA, Carvalho DA, Gavilanes ML (1994) Effects of soils and topography on the distribution of tree species in a tropical riverine forest in South-Eastern Brazil. J Trop Ecol 10:483–508

    Article  Google Scholar 

  • Pinheiro ES (2008) Análises ecológicas e sensoriamento remoto aplicados à estimativa de fitomassa de cerrado na Estação Ecológica de Assis, SP. Dissertation, Escola de Engenharia da Universidade de São Paulo, São Carlos, SP

  • Pinheiro ES, Durigan G (2009) Dinâmica espaço-temporal (1962–2006) das fitofisionomias em unidade de conservação do Cerrado no sudeste do Brasil. Revista Brasileira de Botânica 32(3):441–454

    Article  Google Scholar 

  • Raij BV, Cantarella H, Quaggio JA, Furlani AMC (1997) Recomendações de adubação e calagem para o estado de São Paulo. 2a ed. Instituto Agronômico, Campinas, SP (Boletim Técnico, 100)

  • Ratter JA, Dargie TCD (1992) An analysis of the floristic composition of 26 cerrado areas in Brazil. Edinburgh J Bot 49:235–250

    Article  Google Scholar 

  • Reatto A, Correia JR, Spera ST (1998) Solos do bioma cerrado: aspectos pedológicos. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina, pp 47–86

    Google Scholar 

  • Ribeiro JF, Haridasan M (1990) Comparação fitossociológica de um cerrado denso e um cerradão em solos distróficos no Distrito Federal. In: Congresso Nacional de Botânica, 35º, Anais, Sociedade Botânica do Brasil, Brasília, DF, pp 342–353

  • Ribeiro JF, Walter BMT (1998) Fitofisionomias do bioma cerrado. In: Sano SM, Almeida SP (eds) Cerrado: ambiente e flora. EMBRAPA-CPAC, Planaltina, pp 89–106

    Google Scholar 

  • Rossi M, Mattos IFA, Coelho RM, Menk JRF, Rocha FT, Pfeifer RM, De Maria IC (2005) Relação solos/vegetação em área natural no Parque Estadual de Porto Ferreira, São Paulo. Revista do Instituto Florestal 17:45–61

    Google Scholar 

  • Ruggiero PGC, Pivello VR (2005) As relações entre a vegetação e o meio físico do cerrado Pé-de-Gigante—O Solo e a Comunidade Vegetal. In: Pivello VR, Varanda EM (eds) O cerrado Pé-de-Gigante: ecologia e conservação. SMA, São Paulo, pp 174–188

    Google Scholar 

  • Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Vegetation-soil relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecol 160:1–16

    Article  Google Scholar 

  • Sano EE, Rosa R, Brito JLS, Ferreira LG (2009) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 1:1–12

    Google Scholar 

  • Shepherd GJ (2009) Fitopac 2.1.1.29: Manual do usuário. Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Silva AM (2005) Banco de dados de curvas de retenção de água de solos brasileiros. Dissertation, São Carlos, SP: Escola de Engenharia da Universidade de São Paulo, São Carlos, SP

  • Soil Survey Staff (1993) Soil Survey Manual. United States Department of Agriculture, Washington, DC (USDA Handbook, 18)

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. USDA, Natural Resources Conservation Services, Washington, DC (USDA Agr. Handbook, 436)

    Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 9th edn. Natural Resources Conservation Service, USDA, Washington, DC

    Google Scholar 

  • Ter Braak CJF (1987) The analysis of vegetation environment relationships by canonical correspondence analysis. Vegetatio 69(1):69–77

    Article  Google Scholar 

  • Ter Braak CJF (1995) Ordination. In: Jongman RHG, Ter Braak CJF, Van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambrigde University Press, Cambrigde, pp 91–173

    Chapter  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD, Havlin JL (1993) Soil fertility and fertilizers, 5th edn. MacMillan Publishing Co., New York

    Google Scholar 

  • Toppa RH (2004) Estrutura e diversidade florística das diferentes fisionomias de cerrado e suas correlações com o solo na Estação Ecológica de Jataí, Luiz Antônio, SP. Dissertation, Universidade Federal de São Carlos, São Carlos, SP

  • Wambeke AV (1981) Calculated soil moisture and temperature regimes of South America: a compilation of soil climatic regimes calculated by using a mathematical model developed by F. Newhall. Cornell University, New York—Soil Management Support Services, USDA, n.p. (SMSS Technical Monograph, 2)

  • Wolf JM (1975) Soil-water relations in Oxisols of Puerto Rico and Brazil. In: Bornemisza E, Alvarado A (eds) Soil management in Tropical America. Soil Science Department, North Carolina State University, Raleigh, pp 145–154

    Google Scholar 

Download references

Acknowledgments

To the São Paulo State Foundation of Research Support (FAPESP), for financial support; to the Brazilian Coordination for Excellence of Graduate Studies (CAPES) for a M.Sc. scholarship to the first author; and to the National Council of Scientific and Technological Development (CNPq) for the fellowship to the 4th author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Marques Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Assis, A.C.C., Coelho, R.M., da Silva Pinheiro, E. et al. Water availability determines physiognomic gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecol 212, 1135–1147 (2011). https://doi.org/10.1007/s11258-010-9893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9893-8

Keywords

Navigation