Skip to main content
Log in

Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Our study focuses on the ground vegetation dynamics and its dependence on microsite conditions in declined climax mountain Norway spruce forests during the recovery period (1995–2006) following upon the considerable decrease of SO2 pollution. We showed that ground vegetation development shifted from prevailing mosses and vegetation-free sites covered with spruce litter to dominance by Avenella flexuosa during the earlier period of massive decline of the observed ecosystems. The expansion of Vaccinium myrtillus seems to occur mainly under the gradually defoliating tree crowns whereas larger canopy gaps and quickly deforested areas are more successfully colonized by grasses, especially Calamagrostis villosa. The gradual spruce stand decline, as well as the corresponding ground vegetation dynamics, proceeded until the end of the twentieth century. Afterwards, the ground vegetation responded to the interruption of trees dying and stopped its expansion on spruce litter microsites. Retreat of both dominant grasses accompanied by the remarkable increase in cover of mosses occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abolin AA (1974) Change of the structure of the moss cover in relation to the distribution of precipitation under the forest canopy. Sov J Ecol 5:243–247

    Google Scholar 

  • Altegrim O, Sjoberg K (1996) Response of bilberry (Vaccinium myrtillus) to clear-cutting and single-tree selection harvests in uneven-aged boreal Picea abies forests. For Ecol Manage 86:39–50

    Article  Google Scholar 

  • Collins BS, Pickett STA (1987) Influence of canopy opening on the environment and herb layer in a northern hardwoods forest. Vegetatio 70:3–10

    Google Scholar 

  • Coudun C, Gégout J-C (2007) Quantitative prediction of the distribution and abundance of Vaccinium myrtillus with climatic and edaphic factors. J Veg Sci 18:517–524

    Article  Google Scholar 

  • Cudlín P, Chmelíková E (1996) Degradation and restoration processes in crowns and fine roots of polluted montane Norway spruce ecosystems. Phyton 36:69–76

    Google Scholar 

  • Cudlín P, Vosátka M, Kropáček K, Mejstřík V (1990) Destruction of ectomycorrhizal relationship of Norway spruce forests in Krušné hory Mts. In: Proceedings of the conference Expertentagung Waldschadenforschung im östlichen Mitteleuropa und Bayern, Passau, pp 413–417

  • Cudlín P, Chmelíková E, Rauch O (1995) Monitoring of Norway spruce forest stand response to the stress impact in the Krkonoše Mts. In: Flousek J, Roberts GCS (eds) Proceedings of the international conference IUCN & MAB. Mountain National Parks and Biosphere Reserves: Monitoring and Management, Špindlerův Mlýn, September 1993. Office of Krkonoše National Park, Vrchlabí, pp 75–80

  • Drda V (1994) SO2 sources and their negative influence on the air quality in the Krkonose and Jizerske hory Mts. with reference to the destruction of forest ecosystems. In: Annual report of the project PPZP MZP GA/78/93 reconstruction of forest ecosystems in the Krkonose National Park. Office of the Krkonose National Park, Vrchlabí

  • Emmer IM, Fanta J, Kobus AT, Kooijman A, Sevink J (1998) Reversing borealization as a means to restore biodiversity in Central-European mountain forests–an example from Krkonoše Mountains, Czech Republic. Biodivers Conserv 7:229–247. doi:10.1023/A:1008840603549

    Article  Google Scholar 

  • Fanta J (ed) (1969) Příroda Krkonošského národního parku. SZN, Praha

    Google Scholar 

  • Foggo MN (1989) Vegetative responses of Deschampsia flexuosa (L.) Trin. (Poaceae) seedlings to nitrogen supply and photosynthetically active radiation. Funct Ecol 3:337–343. doi:10.2307/2389374

    Article  Google Scholar 

  • Giesler R, Hörberg M, Hörberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137

    Article  Google Scholar 

  • Grodzki W, McManus M, Knížek M, Meshkova V, Mihalciuc V, Novotný J, Turčani M, Slobodyan Y (2004) Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress. Environ Pollut 13:73–83. doi:10.1016/j.envpol.2003.10.022

    Article  CAS  Google Scholar 

  • Hallbäcken L, Zhang LQ (1998) Effect of experimental acidification, nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce (Picea abies (L.) Karst.) in SE Sweden. For Ecol Manage 108:201–213

    Article  Google Scholar 

  • Hansen K, Draaijers GPJ, Ivens WPMF, Gundersen P, van Leeuwen NEM (1993) Concentration variations in rain and canopy throughfall collected sequentially during individual rain events. Atmos Environ 28:3195–3205. doi:10.1016/1352-2310(94)00176-L

    Article  Google Scholar 

  • Havas P, Kubin E (1983) Structure, growth and organic matter content in the vegetation cover of an old spruce forest in Nothern Finland. Ann Bot Fenn 20:115–149

    Google Scholar 

  • Holeksa J (2003) Relationship between field-layer vegetation and canopy openings in a Carpathian subalpine spruce forest. Plant Ecol 168:57–67. doi:10.1023/A:1024457303815

    Article  Google Scholar 

  • Jeník J (1961) Alpinská vegetace Krkonoš, Králického Sněžníku a Hrubého Jeseníku: Teorie anemo-orografických systémů. ČSAV, Praha

    Google Scholar 

  • Kellner O, Redbo-Torstensson P (1995) Effects of elevated nitrogen deposition on the field-layer vegetation in coniferous forests. Ecol Bull 44:227–237

    Google Scholar 

  • Kooijman AM, Emmer IM, Fanta J, Sevink J (2000) Natural regeneration potential of the degraded Krkonoše forests. Land Degrad Dev 11:459–473. doi:10.1002/1099-145X(200009/10)11:5<459::AID-LDR407>3.0.CO;2-F

    Article  Google Scholar 

  • Kopacek J, Vesely J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39:2179–2188. doi:10.1016/j.atmosenv.2005.01.002

    Article  CAS  Google Scholar 

  • Kubát K (ed) (2002) Klíč ke květeně České republiky. Academia, Praha

    Google Scholar 

  • Kubin E (1983) Nutrients in the soil, ground vegetation and tree layer in an old spruce forest in Nothern Finland. Ann Bot Fenn 20:361–390

    CAS  Google Scholar 

  • Mäkipää R (1998) Sensitivity of understorey vegetation to nitrogen and sulphur deposition in spruce stand. Ecol Eng 10:87–95. doi:10.1016/S0925-8574(97)10022-2

    Article  Google Scholar 

  • Mladenoff DJ (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180. doi:10.2307/1939201

    Article  Google Scholar 

  • Nakashizuka T (1985) Diffused light conditions in canopy gaps in a beech (Fagus crenata) forest. Oecologia 66:472–474. doi:10.1007/BF00379336

    Article  Google Scholar 

  • Nilsson M-C, Wardle DA, Zackrisson O, Jäderlund A (2002) Effects of alleviation of ecological stresses on an alpine tundra community over an eight-year period. Oikos 97:3–17. doi:10.1034/j.1600-0706.2002.970101.x

    Article  Google Scholar 

  • Nordin A, Strengbom J, Ericson L (2006) Responses to ammonium and nitrate additions by boreal plants and their natural enemies. Environ Pollut 141:167–174. doi:10.1016/j.envpol.2005.08.017

    Article  CAS  PubMed  Google Scholar 

  • Nygaard PH (1994) Ground vegetation: the B-2 experiment. In: Abrahamsen G, Stuanes AO, Tveite B (eds) Long-term experiments with acid rain in Norwegian forest ecosystems. Springer-Verlag, New York, pp 221–229

    Google Scholar 

  • Nygaard PH, Ødegaard T (1999) Sixty years of vegetation dynamics in a south boreal coniferous forest in southern Norway. J Veg Sci 10:5–16. doi:10.2307/3237155

    Article  Google Scholar 

  • Økland RH, Eilertsen O (1996) Dynamics of understorey vegetation in an old-growth boreal coniferous forest, 1988–1993. J Veg Sci 7:747–762. doi:10.2307/3236386

    Article  Google Scholar 

  • Økland RH, Rydgren K, Økland T (1999) Single-tree influence on understorey vegetation in a Norwegian boreal spruce forest. Oikos 87:488–498. doi:10.2307/3546813

    Article  Google Scholar 

  • Økland T, Bakkestuen V, Økland RH, Eilertsen O (2004) Changes in forest understorey vegetation in Norway related to long-term soil acidification and climatic change. J Veg Sci 15:437–448

    Article  Google Scholar 

  • Olsson BA, Kellner O (2006) Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For Ecol Manage 237:458–470

    Article  Google Scholar 

  • Parsons WFJ, Knight DH, Miller SL (1994) Root gap dynamics in lodgepole pine forest: nitrogen transformations in gaps of different size. Ecol Appl 4:354–362. doi:10.2307/1941939

    Article  Google Scholar 

  • Polák T, Cudlín P, Moravec I, Albrechtová J (2007) Macroscopic indicators for the retrospective assessment of Norway spruce crown response to stress in the Krkonoše Mountains. Trees (Berl) 21:23–35. doi:10.1007/s00468-006-0093-z

    Article  Google Scholar 

  • Pyšek P (1993) What do we know about Calamagrostis villosa?—a review of the species behaviour in secondary habitats. Preslia 65:1–20

    Google Scholar 

  • Pyšek P (1994a) Effect of soil characteristics on succession in sites reclaimed after acid rain deforestation. Ecol Eng 3:39–47. doi:10.1016/0925-8574(94)90010-8

    Article  Google Scholar 

  • Pyšek P (1994b) Pattern of species dominance and factors affecting community composition in areas deforested due to air pollution. Vegetatio 112:45–56. doi:10.1007/BF00045099

    Article  Google Scholar 

  • Reif A (1989) The vegetation of the Fichtelgebirge: origin, site conditions, and present status. In: Schulze ED, Lange OL, Oren R (eds) Forest decline and air pollution. Ecol Stud, vol 77. Springer-Verlag, New York, pp 8–22

    Google Scholar 

  • Rosen K, Gundersen P, Tenghammar L, Johansson M, Frogner T (1992) Nitrogen enrichment in Nordic forest ecosystems. Ambio 21:364–368

    Google Scholar 

  • Rydgren K (1996) Vegetation-environment relationships of old-growth spruce forest vegetation in Østmarka Nature Reserve, SE Norway, and comparison of three ordination methods. Nord J Bot 16:421–439. doi:10.1111/j.1756-1051.1996.tb00254.x

    Article  Google Scholar 

  • Saarsalmi A, Mälkönen E (2001) Forest fertilization research in Finland: a literature review. Scand J For Res 16:514–535. doi:10.1080/02827580152699358

    Article  Google Scholar 

  • Sander C, Eckstein D, Kyncl J, Dobrý J (1995) The growth of spruce (Picea abies (L.) Karst.) in the Krkonoše-(Giant) Mts. as indicated by ring width and wood density. Ann Sci For 52:401–410. doi:10.1051/forest:19950501

    Article  Google Scholar 

  • Schaetzl RJ, Johnson DL, Burns SF, Small TW (1989) Tree uprooting review of impacts on forest ecology. Vegetatio 79:165–176. doi:10.1007/BF00044908

    Article  Google Scholar 

  • Schwarz O (2001) Status of forestry in the Krkonose National Park. In: Appendix to the final report of the project CEC EU SUSBIOFOR. Office of the Krkonose National Park, Vrchlabí

  • Šerá B, Falta V, Cudlín P, Chmelíková E (2000) Contribution to knowledge of natural growth and development of mountain Norway spruce seedlings. Ekologia (Bratisl) 19:420–434

    Google Scholar 

  • Smith WH (1990) Air pollution and forest interaction between air contaminants and forest ecosystems. Springer-Verlag, New York

    Google Scholar 

  • Soukupová L (1996) Víceletá dynamika rozvoje Calamagrostis villosa v acidifikovaných horských smrčinách středních Sudet (Several-year dynamics of Calamagrostis villosa development in acidified mountain spruce forests of Middle Sudeticum region). In: Vacek S (ed) Monitoring, výzkum a management ekosystémů na území Krkonošského národního parku. Proceedings of the international conference, Opočno, 15–17 April 1996, pp 321–326

  • Soukupová L, Rauch O (1999) Floor vegetation and soil of acidified Picea abies forests in the Giant Mountains (Central Europe). Preslia 71:257–275

    Google Scholar 

  • Strengbom J, Nordin A, Näsholm T, Ericson L (2002) Parasitic fungus mediates vegetational change in nitrogen exposed boreal forests. J Ecol 90:61–67. doi:10.1046/j.0022-0477.2001.00629.x

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user`s guide to Canoco for Windows. Microcomputer Power, Ithaca

    Google Scholar 

  • Vacek S (1981) Zdravotní stav a snížená fruktifikace autochtonních smrkových porostů jako odraz imisního zatížení v oblasti anemo-orografického systému Mumlavy. Opera Corcon 18:89–103

    Google Scholar 

  • Vacek S, Matějka K (1999) The state of forest stands on permanent research plots in the Krkonoše Mts in years 1976–1997. J For Sci 45:291–315

    Google Scholar 

  • Vacek S, Bastl M, Lepš J (1999) Vegetation changes in forest of the Krkonoše Mts over a period of air pollution stress (1980–1995). Plant Ecol 143:1–11. doi:10.1023/A:1009833313509

    Article  Google Scholar 

  • Vacek S, Podrázský V, Mikeska M, Schwarz O, Simon J, Boček M, Minx T (2006) Lesy a ekosystémy nad horní hranicí lesa v národních parcích Krkonoš (Forests and ecosystems on the tree line in the national parks of the Giant Mts.). Forestalia 2. Lesnická práce, Praha

    Google Scholar 

  • van Roon T (1993) Spontaneous regeneration of trees in the Krkonoše Mountains, Czech Republic. Manuscript, Department of Forestry, Agricultural University of Wageningen

  • Vosátka M, Soukupová L, Rauch O, Škoda M (1995) Expansion dynamics of Calamagrostis villosa and VA—mycorrhiza in relation to different soil acidification. In: Flousek J, Roberts GCS (eds) Proceedings of the international conference IUCN & MAB. Mountain national parks and biosphere reserves: monitoring and management, Špindlerův Mlýn, September 1993. Office of Krkonoše National Park, Vrchlabí, pp 75–80

  • Wild J, Neuhäuslová Z, Sofron J (2004) Changes of plant species composition in the Šumava spruce forests, SW Bohemia, since the 1970s. For Ecol Manage 187:117–132

    Article  Google Scholar 

  • Zanini E (ed) (2004) Final report of INTAS-2001-0512, Project Biological and pedological evolutionary trends in benchmark podzolic ecosystems under changing climate and anthropogenic influence (PODZOL), University of Turin, Turin.

  • Żołnierz L, Wojtuń B, Matuła J (2000) Przemiany roślinności w zamierających borach świerkowych Karkonoszy i rozwój zbiorowisk roślinnych na powierzchniach wylesionych (Vegetation changes in declining spruce forests of the Karkonosze Mountains and the development of plant communities in deforested areas). Opera Corcon 36:420–425

    Google Scholar 

Download references

Acknowledgements

This research was supported by the European Union (contract PL013388), by the project of the Ministry of Education of the Czech Republic OC 141, and by the Research Plan of the Institute of Systems Biology and Ecology, Academy of Sciences of the Czech Republic: AV0Z60870520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Vávrová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vávrová, E., Cudlín, O., Vavříček, D. et al. Ground vegetation dynamics in mountain spruce (Picea abies (L.) Karsten) forests recovering after air pollution stress impact. Plant Ecol 205, 305–321 (2009). https://doi.org/10.1007/s11258-009-9619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9619-y

Keywords

Navigation