Skip to main content
Log in

Nitrogen addition and rhizome severing modify clonal growth and reproductive modes of Leymus chinensis population

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We examined the effects of N addition and rhizome severing on sexual and clonal reproduction and their trade-off in a rhizome clonal grass, Leymus chinensis (Trin.) Tzvel. We discovered that N addition not only greatly increased the quantity and biomass of Leymus chinensis ramets, but also promoted ramet production by increasing the tillers of the plant, while abated the other alternative clonal propagation strategy of rhizome elongation. However, N addition did not affect the rhizome biomass and it significantly reduced the flowering probability, the individual seed mass, and the seed number. Rhizome severing did not markedly affect the quantity and the weight of ramets, the individual seed mass or the seed number, but greatly decreased the rhizome biomass. A significantly negative relation was found between sexual and clonal propagation in Leymus chinensis population upon N addition. We showed that the nutrient availability can modify the sexual versus clonal reproductive trade-off and the clonal propagation strategy. Intense ramet production characteristics of clonal growth will largely affect the sexual reproductive capacity and intensify intraclonal competition, thereby influencing their genetic diversity, spatial colonizing ability and life history strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamson WG (1980) Demography and vegetative reproduction. In: Solbrig OT (ed) Demography and evolution in plant populations. Blackwell, Oxford, UK, pp 89–106

    Google Scholar 

  • Cain ML, Damman H (1997) Clonal growth and ramet performance in the woodland herb, Asarum canadense. J Ecol 85:883–897. doi:10.2307/2960609

    Article  Google Scholar 

  • Cook RE (1985) Growth and development in clonal plant populations. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, New Haven, pp 259–296

    Google Scholar 

  • Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520. doi:10.1023/A:1016005519651

    Article  Google Scholar 

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238. doi:10.2307/3565427

    Article  Google Scholar 

  • Eriksson O (1992) Evolution of seed dispersal and recruitment in clonal plants. Oikos 63:439–448. doi:10.2307/3544970

    Article  Google Scholar 

  • Eriksson O (1997) Clonal life histories and the evolution of seed recruitment. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp 211–226

    Google Scholar 

  • Fischer M, van Kleunen M (2002) On the evolution of clonal plant life histories. Evol Ecol 15:565–582. doi:10.1023/A:1016013721469

    Article  Google Scholar 

  • Gardner SN, Mangel M (1999) Modeling investments in seed, clonal offspring, and translocation in a clonal plant. Ecology 80:1202–1220

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, San Diego, CA

    Google Scholar 

  • Hartnett DC (1990) Size-dependent allocation to sexual and vegetative reproduction in four clonal composites. Oecologia 84:254–259

    Google Scholar 

  • Heywoods JS (1986) The effect of plant size variation on genetic drift in population of annuals. Am Nat 127:851–861. doi:10.1086/284529

    Article  Google Scholar 

  • Humphrey LD, Pyke DA (1998) Demographic and growth responses of a guerrilla and a phalanx perennial grass in competitive mixtures. J Ecol 86:854–865. doi:10.1046/j.1365-2745.1998.8650854.x

    Article  Google Scholar 

  • Hutchings MJ, De Kroon H (1994) Foraging in plants: the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238. doi:10.1016/S0065-2504(08)60215-9

  • Inner-Mongolia, Ning Xia Investigation and Survey Team of the Chinese Academy of Sciences (1985) The vegetation of Inner Mongolia. Science Press, Beijing, pp 516–527

  • Koivunen S, Saikkonen K, Vuorisalo T, Mutikainen P (2004) Heavy metals modify costs of reproduction and clonal growth in the stoloniferous herb Potentilla anserine. Evol Ecol 18:541–561. doi:10.1007/s10682-004-5143-7

    Article  Google Scholar 

  • Loehle C (1987) Partitioning of reproductive effort in clonal plants: a benefit-cost model. Oikos 49:199–208. doi:10.2307/3566027

    Article  Google Scholar 

  • López F, Fungairino S, Heras P, Serrano J, Acosta F (2001) Age changes in the vegetative vs. reproductive allocation by module demographic strategies in a perennial plant. Plant Ecol 157:13–21. doi:10.1023/A:1014597832475

    Article  Google Scholar 

  • López-Almansa JC, Pannell JR, Gil L (2003) Female sterility in Ulmus minor (Ulmaceae): a hypothesis invoking the cost of sex in a clonal plant. Am J Bot 90:603–609. doi:10.3732/ajb.90.4.603

    Article  Google Scholar 

  • Muir AM (1995) The cost of reproduction to the clonal herb Asarum canadense (wild ginger). Can J Bot 73:1683–1686. doi:10.1139/b95-182

    Article  Google Scholar 

  • Noble JC, Bell AD, Harper JL (1979) The population biology of plants with clonal growth. I. The morphology and structural demography of Carex arenarla. J Ecol 67:983–1008. doi:10.2307/2259224

    Article  Google Scholar 

  • Pan QM, Bai YF, Han XG, Yang JC (2005) Effects on nitrogen additions on Leymus chinensis population in typical steppe of Inner Mongolia. Acta Phytoecol Sin 29:311–317

    CAS  Google Scholar 

  • Philbrick CT, Les DH (1996) Evolution of aquatic angiosperm reproductive systems. Bioscience 46:813–826. doi:10.2307/1312967

    Article  Google Scholar 

  • Piquot Y, Petit D, Valero M, Cugen J, de Laguerie P, Vernet P (1998) Variation in asexual and sexual reproduction among young and old populations of the perennial macrophyte Sparganium erectum. Oikos 82:139–148. doi:10.2307/3546924

    Article  Google Scholar 

  • Prati D, Schmid B (2000) Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos 90:442–456. doi:10.1034/j.1600-0706.2000.900303.x

    Article  Google Scholar 

  • Sackville Hamilton NR, Schmid B, Harper JL (1987) Life-history concepts and the population biology of clonal organisms. Proc R Soc Lond B Biol Sci 232:35–57

    Article  Google Scholar 

  • Sakai S (1995) Optimal resource allocation to vegetative and sexual reproduction of a plant growing in a spatially varying environment. J Theor Biol 175:271–282. doi:10.1006/jtbi.1995.0141

    Article  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. doi:10.1016/S1360-1385(00)01797-0

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Gao X, Cai Y (2001) Variations in sexual and asexual reproduction of Scirpus mariqueter along an elevational gradient. Ecol Res 16:263–274. doi:10.1046/j.1440-1703.2001.00395.x

    Article  Google Scholar 

  • Sutherland S, Vickery RKJ (1988) Trade-offs between sexual and asexual reproduction in the genus Mimulus. Oecologia 76:330–335

    Google Scholar 

  • Thompson FL, Eckert CG (2004) Trade-offs between sexual and clonal reproduction in an aquatic plant: experimental manipulations vs. phenotypic correlations. J Evol Biol 17:581–592. doi:10.1111/j.1420-9101.2004.00701.x

    Article  PubMed  CAS  Google Scholar 

  • Van Groenendael JM, Habekotte B (1988) Cyperus esculentus L. Biology, population dynamics, and possibilities to control this neophyte. Z PflKrankh PflSchutz Sonderh XI:61–69

    Google Scholar 

  • Van Kleunen M, Fischer M, Schmid B (2001) Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos 94:515–524. doi:10.1034/j.1600-0706.2001.940313.x

    Article  Google Scholar 

  • Van Zandt PA, Tobler MA, Mouton E, Hasenstein KH, Mopper S (2003) Positive and negative consequences of salinity stress for the growth and reproduction of the clonal plant, Iris hexagona. J Ecol 91:837–846. doi:10.1046/j.1365-2745.2003.00806.x

    Article  Google Scholar 

  • Wang YS (1987) A preliminary studies on seed banks and propagule dispersal of Leymus chinensis population in forest steppe. Proceedings of international symposium on grassland in forest area, Harbin, China

  • Wang ZW (2004) Growing strategies of a rhizomatous clonal plant Leymus chinensis (Trin.) Tzvel. in response to defoliation at ramet population level. Postdoctoral thesis, Institute of Botany, Chinese Academy of Sciences, Beijing, pp 1–94

  • Wang Z, Burch WH, Mou P, Jones RH, Mitchell RJ (1995) Accuracy of visible and ultraviolet light for estimating live root proportions with minirhizotrons. Ecology 76:2330–2334. doi:10.2307/1941705

    Article  Google Scholar 

  • Wang YS, Hong RM, Huang DM, Teng XH, Li YS, Shiyomi M, Nakamura M (2004a) The translocation of photosynthate between clonal ramets of Leymus chinensis population. Acta Ecol Sin 24:900–907

    Google Scholar 

  • Wang Z, Li L, Han X, Dong M (2004b) Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level? Acta Oecol 26:255–260. doi:10.1016/j.actao.2004.08.007

    Article  Google Scholar 

  • Weppler T, Stocklin J (2005) Variation of sexual and clonal reproduction in the alpine Geum reptans in contrasting altitudes and successional stages. Basic Appl Ecol 6:305–306. doi:10.1016/j.baae.2005.03.002

    Article  Google Scholar 

  • Westley LC (1993) The effects of inflorescence bud removal on corm production in Helianthus cormosus, L. (Asocaceae). Ecology 74:2136–2144. doi:10.2307/1940858

    Article  Google Scholar 

  • Yang YF, Zhang BT (1992) An analysis of seasonal variation of vegetative propagation and the relationship between biomass and population density of an Aneurolepidium chinense in Songnen plain of China. Acta Bot Sin 34:443–449

    Google Scholar 

  • Yang YF, Liu GC, Zhang BT (1995) An analysis of age structure and the strategy for asexual propagation of Aneurolepidium chinense population. Acta Bot Sin 37:147–153

    Google Scholar 

  • Zhang YF, Zhang DY (2006) Asexual and sexual reproductive strategies in clonal plants. Acta Phytoecol Sin 30:174–183

    CAS  Google Scholar 

  • Zhu TC (2004) Biological and ecological study of Leymus chinensis. Ji Lin Science and technology press, China, pp 90–154

    Google Scholar 

Download references

Acknowledgments

We would like to thank S. H. Song and X. Li for their help in field and laboratory work. This research was supported by the State Key Basic Research Development Program of China (No.2007CB106800), the Knowledge Innovation Major Project of CAS (No.KZCX2-XB2-01), a grant from the National Natural Science Foundation of China (No.30521002 and No.30370268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linghao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, W., Sun, X., Wang, Z. et al. Nitrogen addition and rhizome severing modify clonal growth and reproductive modes of Leymus chinensis population. Plant Ecol 205, 13–21 (2009). https://doi.org/10.1007/s11258-009-9595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9595-2

Keywords

Navigation