Skip to main content

Advertisement

Log in

The survival strategy of the alpine endemic Primula glaucescens is fundamentally unchanged throughout its climate envelope despite superficial phenotypic variability

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The survival of alpine species in changing climates depends on dispersal or adaptation. However, it is unclear whether trait variability along elevation/climatic gradients is adaptive or represents stress towards lower/warmer elevations, particularly for the endangered endemics for which protected status and plant longevity preclude experimental study. We chose one such species, known for its phenotypic variability (Primula glaucescens, endemic to the southern Alps), and quantified key functional traits in situ throughout its range, correlating these with elevation as a proxy for climate. Larger leaves were evident towards lower elevations, but tissue nitrogen dilution and limited regenerative fitness were symptomatic of stress. Specific leaf area, a correlate of relative growth rate, was consistently low: the entire species exhibits conservative leaf economy and inherently slow growth. This seemingly variable species exhibits superficial variability around a fundamentally conservative, cold-adapted survival strategy, and thus phenotypic variability is unlikely to facilitate the persistence of alpine endemics during rapid climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonietti A (1986) Segnalazioni floristiche in Valsolda. Atti dell’Istituto di Botanica e del Laboratorio Crittogamico dell’Università di Pavia 5:53–55 (in Italian)

  • Arietti N, Crescini A (1976) Gli endemismi della flora Insubrica: la Primula longobarda Porta e sua posizione tassonomica nel quadro della subsect. Arthritica Schott. Natura Bresciana 13:3–32 (in Italian)

    Google Scholar 

  • Caccianiga M, Luzzaro A, Pierce S, Ceriani RM, Cerabolini B (2006) The functional basis of a primary succession resolved by CSR classification. Oikos 112:10–20. doi:10.1111/j.0030-1299.2006.14107.x

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    Article  PubMed  CAS  Google Scholar 

  • Cerabolini B, Ceriani RM, Caccianiga M, De Andreis R, Raimondi B (2003) Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coast. Seed Sci Res 13:75–85. doi:10.1079/SSR2002126

    Article  Google Scholar 

  • Cerabolini B, De Andreis R, Ceriani RM, Pierce S, Raimondi B (2004) Seed germination and conservation of endangered species from the Italian Alps: Physoplexis comosa and Primula glaucescens. Biol Conserv 117:351–356. doi:10.1016/j.biocon.2003.12.011

    Article  Google Scholar 

  • Ceriani RM (2003) Ecological, morpho-functional and regenerative characteristics of plant species from Prealpine grassland. PhD Thesis, University of Insubria, Italy

  • Ceriani RM, Perini D, De Andreis R, Brusa G, Cerabolini B (2005) Confronto della variabilità genetica tra popolazioni della specie endemica Primula glaucescens Moretti a fini conservazionistici. Informatore Botanico Ital 37(1A):196–197 (in Italian)

  • Ceriani RM, Pierce S, Cerabolini B (2008) Are morpho-functional traits reliable indicators of inherent relative growth rate for prealpine calcareous grassland species? Plant Biosyst 142(1):60–65. doi:10.1080/11263500701872374

    Google Scholar 

  • Conti F, Manzi A, Pedrotti F (1997) Liste Rosse regionali delle piante d’Italia. WWF and Società Botanica Italiana, Camerino, Italy (in Italian)

    Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE et al (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. doi:10.1071/BT02124

    Article  Google Scholar 

  • Franco AMA, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R et al (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-altitude range boundaries. Glob Chang Biol 12:1545–1553. doi:10.1111/j.1365-2486.2006.01180.x

    Article  Google Scholar 

  • Gimalov FR, Baymiev AK, Matniyazov RT, Chemeris AV, Vakhitov VA (2004) Initial stages of low-temperature induction of cabbage cold shock protein gene csp5. Biochemistry (Mosc) 69(5):575–579. doi:10.1023/B:BIRY.0000029857.05522.d5

    Article  CAS  Google Scholar 

  • Gottfried M, Pauli H, Reiter K, Grabherr G (1999) A fine-scaled predictive model for changes in species distributions patterns of high mountain plants induced by climate warming. Divers Distrib 5(6):241–252. doi:10.1046/j.1472-4642.1999.00058.x

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448. doi:10.1038/369448a0

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  • Guisan A, Theurillat J-P (2000) Assessing alpine plant vulnerability to climate change: a modelling perspective. Integr Assess 1:307–320. doi:10.1023/A:1018912114948

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Chang Biol 12:450–455. doi:10.1111/j.1365-2486.2006.01116.x

    Article  Google Scholar 

  • Huntley B, Berry PM, Cramer W, McDonald AP (1995) Modelling present and potential future ranges of some European higher plants using climate response surfaces. J Biogeogr 22:967–1001. doi:10.2307/2845830

    Article  Google Scholar 

  • Huntley B, Green RE, Collingham YC, Hill JK, Willis SG, Bartlein PJ et al (2004) The performance of models relating species geographical distributions to climate is independent of trophic level. Ecol Lett 7:417–426. doi:10.1111/j.1461-0248.2004.00598.x

    Article  Google Scholar 

  • Jump A, Woodward FI (2003) Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol 160:349–358. doi:10.1046/j.1469-8137.2003.00873.x

    Article  Google Scholar 

  • Körner C (1999a) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Oxford, pp 297–311

    Google Scholar 

  • Körner C (1999b) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22(11):569–574. doi:10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • Lehtilä K, Syrjänen K, Leimu R, Garcia MB, Ehrlén J (2006) Habitat change and demography of Primula veris: modification of management targets. Conserv Biol 20(3):833–843. doi:10.1111/j.1523-1739.2006.00368.x

    Article  PubMed  Google Scholar 

  • Lienert J, Fischer M (2003) Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. J Ecol 91:587–599. doi:10.1046/j.1365-2745.2003.00793.x

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2004) Climate change and plant conservation. Plant Talk 35:34–38

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669. doi:10.1146/annurev.ecolsys.37.091305.110100

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. doi:10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107. doi:10.1016/j.baae.2007.01.005

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mt Ecol 7(Suppl):9–12

    Google Scholar 

  • Pierce S, Vianelli A, Cerabolini B (2005) From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct Ecol 19(5):763–776. doi:10.1111/j.1365-2435.2005.01028.x

    Article  Google Scholar 

  • Pignatti S (1982) Flora d’Italia. Edagricole, Bologna (In Italian)

    Google Scholar 

  • Poorter H, Van der Werf A (1998) Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In: Lambers H et al (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, Netherlands, pp 309–336

    Google Scholar 

  • Ravazzi C (1992) Lineamenti fisionomici, ecologia e fattori edafici della vegetazione di alcuni massicci calcareo-dolomitici della prealpi lombarde. Praterie naturali e seminaturali. Natura Bresciana 27:11–42 (in Italian)

    Google Scholar 

  • Ravazzi C (1999) Distribuzione ed ecologia di due Primule endemiche delle Prealpi calcaree meridionali, Primula glaucescens e P. spectabilis, e considerazioni sulla loro corogenesi. Arch Geobotanico 3:125–148 (in Italian)

    Google Scholar 

  • Ravazzi C, Ferlinghetti R (1986) Analisi dei caratteri geoambientali e tassonomici di una nuova stazione disgiunta di Primula gr. glaucescens nelle alpi Orobie. Rivista del Museo Civico di Scienze Naturali “Enrico Caffi” di Bergamo 10: 79–99 (in Italian)

  • Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45. doi:10.1016/j.baae.2004.09.004

    Article  CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi:10.1038/nature01333

    Article  PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8(4):179–187. doi:10.1016/S1360-1385(03)00047-5

    Article  PubMed  CAS  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109. doi:10.1023/A:1010632015572

    Article  CAS  Google Scholar 

  • Van Rossum F, Triest L (2003) Spatial genetic structure and reproductive success in fragmented and continuous populations of Primula vulgaris. Folia Geobot 38:239–254. doi:10.1007/BF02803196

    Article  Google Scholar 

  • Van Rossum F, Echchgadda G, Szabadi I, Triest L (2002) Commonness and long-term survival in fragmented habitats: Primula elatior as a case study. Conserv Biol 16(5):1286–1295. doi:10.1046/j.1523-1739.2002.01162.x

    Article  Google Scholar 

  • Weiher E, Van Der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerley DD, Baruch Z et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. doi:10.1038/nature02403

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Francesco Bedin for assistance in the field, Dr. Guido Brusa (University of Insubria) for help with the germination tests and Prof. Brian Huntley (University of Durham, UK) for comments on a draft of the manuscript. This study was supported by the Centro Flora Autoctona (Native Flora Centre) of Lombardy (Galbiate, Lecco, Italy), via the University of Insubria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Pierce.

Additional information

Nomenclature: Pignatti (1982).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceriani, R.M., Pierce, S. & Cerabolini, B. The survival strategy of the alpine endemic Primula glaucescens is fundamentally unchanged throughout its climate envelope despite superficial phenotypic variability. Plant Ecol 204, 1–10 (2009). https://doi.org/10.1007/s11258-008-9559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9559-y

Keywords

Navigation