Skip to main content
Log in

Do plant functional types based on leaf dry matter content allow characterizing native grass species and grasslands for herbage growth pattern?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Few studies have focused on vegetation characteristics of importance to feeding domestic herbivores, mainly the seasonal pattern of herbage growth at spring. Our objective is to establish and to evaluate a simple method of ranking grassland communities for these characteristics. We combined approaches at plant species level (comparison of grass species growing in a pure stand) and plant community level (comparison of grasslands differing mainly in their nutrient availability). Firstly, we ask if the ranking of species by leaf dry matter content (LDMC), a functional parameter used to assess the plant strategy for resource acquisition and use, is consistent with a classification of the species using three plant features that determine plant growth pattern at spring (beginning and ending of stem elongation, leaf lifespan). Secondly, for three networks of natural grasslands, we test whether there is consistency when ranking them by their dominant plant functional type (PFT A, B or C) established previously at species level, and by the three agronomic characteristics. For species growing in pure stands, there was a significant effect of PFT for the three plant features. For species having a low LDMC (A and B PFT), there were earlier stem elongation in the season, earlier flowering and shorter leaf lifespan. The opposite was observed for species having a high LDMC (C and D PFT). For grassland communities dominated by A-PFT, the ceiling yield for leaves and stems occurred earlier in spring than for those dominated by C-PFT. Results were consistent at plant and community levels. Scaling up from plant to community was well mediated by PFT. Plant features which characterize species for resource acquisition and use are consistent with herbage growth patterns at plant community level. These results show that herbage growth pattern and composition depend on PFTs and that knowing the PFT dominance is of great importance to plan the use of grasslands. We can expect to use the PFT approach to perform vegetation diagnosis at field level when the objective is to rank grassland communities for their agronomic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerly D (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184. doi:10.1086/368401

    Article  Google Scholar 

  • Ackerly DD, Bazzaz FA (1995) Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. Oecologia 101:289–298. doi:10.1007/BF00328814

    Article  Google Scholar 

  • Al Haj Khaled R, Duru M, Theau JP, Plantureux S, Cruz P (2005) Variation of leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. J Veg Sci 16:391–398. doi:10.1658/1100-9233(2005)016[0391:VILTTS]2.0.CO;2

    Article  Google Scholar 

  • Ansquer P, Theau JP, Cruz P, Viegas J, Al Haj Khaled R, Duru M (2004) Caractérisation de la diversité fonctionnelle des prairies naturelles. Une étape vers la construction d’outils pour gérer les milieux à flore complexe. Fourrages 179:353–368

    Google Scholar 

  • Ansquer P, Cruz P, Theau JP, Lecloux E, Duru M (2005) How to simplify tools for natural grassland characterisation based on biological measures without losing too much information? IGC, Glasgow, p 197

    Google Scholar 

  • Balent G, Duru M (1984) Influence des modes d’exploitation sur les caractéristiques et l’évolution des surfaces pastorales. Agronomie 4:113–124. doi:10.1051/agro:19840202

    Article  Google Scholar 

  • Calvière I, Duru M (1999) The effect of N and P fertilizer application and botanical composition on the leaf/stem ratio patterns in spring in Pyrenean meadows. Grass Forage Sci 54:255–266. doi:10.1046/j.1365-2494.1999.00178.x

    Article  Google Scholar 

  • Coleno FC, Duru M, Theau JP (2005) A method to analyse decision-making processes for land use management in livestock farming. Int J Agric Sustain 3:69–77

    Google Scholar 

  • Cruz P, Duru M, Therond O, Theau JP, Ducourtieux C, Jouany C, Al Haj Khaled R, Ansquer P (2002) Une nouvelle approche pour caractériser les prairies naturelles et leur valeur d’usage. A new approach to the characterization of natural grasslands and their use value. Fourrages 172:335–354

    Google Scholar 

  • Daget P, Poissonnet P (1971) Une méthode d’analyse phytosociologique des prairies Critères d’application. Ann Agronomiques 22:5–41

    Google Scholar 

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem functions in relation to global change. J Veg Sci 8:463–474. doi:10.2307/3237198

    Google Scholar 

  • Duru M, Calvière I (1996) Effet des niveaux de nutrition en phosphore et en azote et de la composition botanique de communautés prairiales sur l’accumulation de biomasse au printemps. Agronomie 16:217–229. doi:10.1051/agro:19960402

    Article  Google Scholar 

  • Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield for permanent pastures. Nutr Cycl Agroecosyst 47:59–69

    Google Scholar 

  • Duru M, Ducrocq H (2002) A model of lamina digestibility of orchardgrass as influenced by nitrogen and defoliation. Crop Sci 42:214–223

    PubMed  Google Scholar 

  • Duru M, Balent G, Langlet A (1994) Mineral nutrition status and botanical composition of pastures. I—Effect on herbage accumulation. Eur J Agron 3:43–51

    CAS  Google Scholar 

  • Duru M, Tallowin J, Cruz P (2005) Functional diversity in low-input grassland farming systems: characterisation, effect and management. In: Lillak R, Viiralt R, Linke A, Geherman V (eds) Integrating efficient grassland farming and biodiversity. Tartu, Estonia, EGF, pp 199–210

  • Fichtner K, Schulze ED (1992) The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92:236–341. doi:10.1007/BF00317370

    Article  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001a) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x

    Article  Google Scholar 

  • Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001b) Consistency of species ranking based on functional leaf traits. New Phytol 152:69–83. doi:10.1046/j.0028-646x.2001.00239.x

    Article  Google Scholar 

  • Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi:10.1890/03-0799

    Article  Google Scholar 

  • Gitay H, Noble IR (1997) What are plant functional types and how should we seek them? In: Smith TM, Shugart HH, Woodward FI (eds) Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology: a functional approach to common British species. Unwyn-Hyman, London

    Google Scholar 

  • Grubb PJ (1998) A reassessment of the strategies of plants which cope with shortages of resources. Perspect Plant Ecol Evol Syst 1:3–31. doi:10.1078/1433-8319-00049

    Article  Google Scholar 

  • Hazard L, Betin M, Molinari N (2006) Correlated response in plant height and heading date to selection in perennial ryegrass populations. Agron J 98:1384–1391. doi:10.2134/agronj2005.0115

    Article  Google Scholar 

  • Jouven M, Carrere P, Baumont R (2006) Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures. 1. Model description. Grass Forage Sci 61:112–124. doi:10.1111/j.1365-2494.2006.00515.x

    Article  Google Scholar 

  • Knops JMH, Reinhart K (2000) Specific leaf area along a nitrogen fertilization gradient. Am Midl Nat 144:265–272. doi:10.1674/0003-0031(2000)144[0265:SLAAAN]2.0.CO;2

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556. doi:10.1046/j.1365-2435.2002.00664.x

    Article  Google Scholar 

  • Lemaire G (1999) Les flux de tissus foliaires au sein des peuplements prairiaux. Eléments pour une conduite raisonnée du pâturage. Fourrages 159:203–222

    Google Scholar 

  • Lemaire G, Gastal F (1997) N Uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis of the nitrogen status in the crops. Springer, Berlin, pp 3–44

  • Louault F, Pillar VD, Garnier E, Soussana JF (2005) Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J Veg Sci 16:151–160. doi:10.1658/1100-9233(2005)016[0151:PTAFTI]2.0.CO;2

    Article  Google Scholar 

  • McCall DG, Bishop-Hurley GJ (2003) A pasture growth model for use in a whole-farm dairy production model. Agric Syst 76:1183–1205. doi:10.1016/S0308-521X(02)00104-X

    Article  Google Scholar 

  • Parsons AJ (1988) The effect of season and management on the grass growth of grass sward. In: Jones MB, Lazenby A (eds) The grass crop. Chapmann et Hall, pp 129–178

  • Poozesh V, Al Haj Khaled R, Ansquer P, Theau JP, Duru M, Bertoni G, Cruz P (2005) Are leaf traits stable enough to rank native grasses in contrasting growth conditions? IGC, Dublin, Juin2005, p 209

  • Reich PB (1993) Reconciling apparent discrepancies among studies relating life span, structure and function of leaves in contrasting plant life forms and climates: the blind men and the elephant retold. Funct Ecol 7:721–725. doi:10.2307/2390194

    Article  Google Scholar 

  • Robson MJ, Ryle GJA, Woledge J (1988) The grass plant-its form and function. In: Jones MB, Lazenby A (eds) The grass crops. pp 25–84

  • Ryser P, Lambers H (1995) Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant Soil 170:251–265. doi:10.1007/BF00010478

    Article  CAS  Google Scholar 

  • Ryser P, Urbas P (2000) Ecological significance of leaf life span among Central European grass species. Oikos 91:41–50. doi:10.1034/j.1600-0706.2000.910104.x

    Article  Google Scholar 

  • Schippers P, Olff H (2000) Biomass partitioning, architecture and turnover of six herbaceous species from habitats with different nutrient supply. Plant Ecol 149:219–231. doi:10.1023/A:1026531420580

    Article  Google Scholar 

  • Sosebee RE, Weibe W (1973) Effect of phenological development on radio phosphorus translocations from leaves in created wheat grass. Oecologia 13:103–112. doi:10.1007/BF00345643

    Article  Google Scholar 

  • Tilman D (1985) The resource-ratio hypothesis of plant succession. Am Econ Rev 125:827–852

    Google Scholar 

  • Van der Werf A, Van Nuenen M, Visser AJ, Lambers H (1993) Effects of N-supply on the rates of photosynthesis and shoot and root respiration of inherently fast- and slow-growing monocotyledonous species. Physiol Plant 89:563–569. doi:10.1111/j.1399-3054.1993.tb05214.x

    Article  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunell C, Hummel I, Garner E (2007) Let the concept of trait be functional! Oikos (in press)

  • Weiher E, Van der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620. doi:10.2307/3237076

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi:10.1023/A:1004327224729

    Article  CAS  Google Scholar 

  • White TA, Barker DJ, Moore KJ (2004) Vegetation diversity, growth, quality and decomposition in managed grasslands. Agric Ecosyst Environ 101:73–84. doi:10.1016/S0167-8809(03)00169-5

    Article  Google Scholar 

  • Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol 143:155–162. doi:10.1046/j.1469-8137.1999.00427.x

    Article  Google Scholar 

Download references

Acknowledgements

This text was written as a part of the SEAMLESS Integrated Project, UE 6th Framework Programme, Contract no. 010036-2 and was part of Workpackage 5 of the EU project VISTA (Vulnerability of Ecosystem Services to Land Use Change in Traditional Agricultural Landscapes) (Contract no EVK2-2001-15 000356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Duru.

Additional information

Fernando L. F. de Quadros was supported by CAPES and CNPq (BP-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duru, M., Al Haj Khaled, R., Ducourtieux, C. et al. Do plant functional types based on leaf dry matter content allow characterizing native grass species and grasslands for herbage growth pattern?. Plant Ecol 201, 421–433 (2009). https://doi.org/10.1007/s11258-008-9516-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9516-9

Keywords

Navigation