Skip to main content

Advertisement

Log in

Changing relationships between tree growth and climate in Northwest China

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Recently, several studies have shown changing relationships between tree growth and climate factors, mostly in the circumpolar north. There, changing relationships with climate seem to be linked to emergent subpopulation behavior. Here, we test for these phenomena in Northwest China using three tree species (Pinus tabulaeformis, Picea crassifolia, and Sabina przewalskii) that had been collected from six sites at Qilian Mts. and Helan Mts. in Northwest China. We first checked for growth divergence of individual sites and then investigated the relationship between tree growth and climate factors using moving correlation functions (CF). Two species, Pinus and Sabina, from two sites clearly showed growth divergence, not only in the late twentieth century as reported in other studies, but also over nearly the whole record. In divergent sites, one chronology shows more stable relationships with climate factors (usually precipitation). In non-divergent sites, nearly all relationships either vary in strength or become non-significant at one point. While this might possibly be related to increased stress on some trees due to increasing temperature, the exact causes for this shift in sensitivity remain unclear. We would like to highlight the necessity for additional studies investigating possible non-stationary growth responses of trees with climate, especially at sites that are used for climate reconstruction as our sites in Northwest China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barber V, Juday G, Finney B (2000) Reduced growth of Alaska white spruce in the twentieth century from temperature-induced drought stress. Nature 405:668–672. doi:10.1038/35015049

    Article  PubMed  CAS  Google Scholar 

  • Biondi F (1997) Evolutionary and moving response functions in dendroclimatology. Dendrochronologia 15:139–150

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi:10.1016/j.cageo.2003.11.004

    Article  Google Scholar 

  • Briffa K, Schweingruber F, Jones P, Osborn T (1998a) Reduced sensitivity of recent tree growth to temperature at high northern latitudes. Nature 391:678–682. doi:10.1038/35596

    Article  CAS  Google Scholar 

  • Briffa K, Schweingruber F, Jones P, Osborn T, Harris I, Shiyatov S et al (1998b) Trees tell of past change climates: but are they speaking less clearly today? Philos Trans R Soc Lond B Biol Sci 353:65–73. doi:10.1098/rstb.1998.0191

    Article  Google Scholar 

  • Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170:861–872. doi:10.1111/j.1469-8137.2006.01703.x

    Article  PubMed  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259. doi:10.1146/annurev.es.13.110182.001305

    Article  Google Scholar 

  • Cook ER (1985) A time series approach to tree-ring standardization. PhD thesis, University of Arizona

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi:10.1177/095968369700700314

    Article  Google Scholar 

  • D’Arrigo R, Kaufmann R, Davi N, Jacoby G, Laskowski C, Myneni R et al (2004) Thresholds for warming-induced growth decline at elevational treeline in the Yukon Territory. Global Biogeochem Cycles 18:GB3021. doi:10.1029/2004GBO02249

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the “divergence problem” in northern forests: a review of tree-ring evidence and possible causes. Global Planet Change 60:289–305. doi:10.1016/j.gloplacha.2007.03.004

    Article  Google Scholar 

  • Ding YH (1994) Monsoon over China. Kluwer Academic Publisher

  • Driscoll W, Wiles G, D’Arrigo R, Wilmking M (2005) Divergent tree growth response to recent climatic warming, Lake Clark National Park and Preserve, Alaska. Geophys Res Lett 32:L20703. doi:10.1029/2005GL024258

    Article  Google Scholar 

  • Fritts HC (1976) Tree ring and climate. Academic Press, London

    Google Scholar 

  • Gao SY, Lu RJ, Qiang MR (2005) Reconstruction of precipitation in the last 140 years from tree ring at south margin of the Tengger Desert, China. Chin Sci Bull 50(21):2487–2492. doi:10.1360/982005-363

    Article  Google Scholar 

  • Gou XH, Chen FH, Wang YJ, Shao XM (2001) Spring precipitation reconstructed in the east of the Qilian Mountain during the last 280 a by tree ring width. J Glaciol Geocryol 23(3):292–296 (in Chinese)

    Google Scholar 

  • Greenough G, McGeehin M, Bernard SM (2001) The potential impacts of climate variability and change on health impacts of extreme weather events in the United States. Environ Health Perspect 109(Suppl. 2):191–198

    Article  PubMed  Google Scholar 

  • Havranek M, Tranquillini W (1995) Physiological processes during their winter dormancy and their ecological significance. In: Smith WK, Hinkley TM (eds) Ecophysiology of coniferous forest. Academic Press, New York, pp 95–124

    Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Hoyt D (2006) Urban heat islands and land use changes. http://www.warwickhughes.com/hoyt/uhi.htm

  • Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20:95–116. doi:10.1078/1125-7865-00011

    Article  Google Scholar 

  • IPCC Fourth AR (2007) Summary for policy makers In: Climate change 2007 Cambridge University Press, Cambridge

  • Jacoby GC, D’Arrigo R (1995) Tree-ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles 9:227–234. doi:10.1029/95GB00321

    Article  CAS  Google Scholar 

  • Jacoby GC, D’Arrigo R, Davaajamts TS (1996) Mongolian tree rings and twentieth century warming. Science 273:771–773. doi:10.1126/science.273.5276.771

    Article  PubMed  CAS  Google Scholar 

  • Jacoby GC, Lovelius N, Shumilov O, Raspopov O, Kurbainov J, Frank D (2000) Long-term temperature trends and tree growth in the Taymir region of northern Siberia. Quat Res 53:312–318. doi:10.1006/qres.2000.2130

    Article  Google Scholar 

  • Julian LH (2000) Effect of daily minimum temperature on photosynthesis in eastern Hemlock (Tsuga canadensis L.) in Autumn and Winter. Arct Antarct Alp Res 32(4):368–374. doi:10.2307/1552384

    Article  Google Scholar 

  • Kahn ME (2005) The death toll from natural disasters: the role of income, geography, and institutions. Rev Econ Stat 87(2):271–284. doi:10.1162/0034653053970339

    Article  Google Scholar 

  • Kang XC, Chen GD, Kang ES, Zhang QH (2002) Based tree rings data reconstruction over 1000-year streamflow of mountain pass in Heihe River. Sci China Ser Dokl Earth Sci 32(8):675–685

    Google Scholar 

  • Knapp PA, Soule PT, Grissino MHD (2001) Detecting potential regional effects of increased atmospheric CO2 on growth rates of western Juniper. Glob Change Biol 7:903–917. doi:10.1046/j.1365-2486.2001.00452.x

    Article  Google Scholar 

  • Liu Y, Shi JF, Shishov V (2004) Reconstruction of May–July precipitation in the north Helan Mountain, Inner Mongolia since AD 1726 from tree-ring late-wood widths. Chin Sci Bull 49(4):405–409. doi:10.1360/03WD0409

    Google Scholar 

  • Liu Y, Cai QF, Shi JF (2005) Seasonal precipitation in the south-central Helan Mountain region, China, reconstructed from tree-ring width for the past 224 years. Can J For Res 35(10):2403–2412. doi:10.1139/x05-168

    Article  Google Scholar 

  • Lloyd A, Fastie C (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Change 52:481–509. doi:10.1023/A:1014278819094

    Article  Google Scholar 

  • Ma ZG, Fu CB (2006) Some evidence of drying trend over northern China from 1951 to 2004. Chin Sci Bull 51:2913–2925. doi:10.1007/s11434-006-2159-0

    Article  Google Scholar 

  • Melvin T (2004) Historical growth rates and changing climatic sensitivity of boreal conifers. Ph.D. thesis, Climatic Research Unit, East Anglia

  • Mitchell T, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Oberhuber W (2004) Influence of climate on radial growth of Pinus cembra within the alpine timberline ecotone. Tree Physiol 24:291–301

    PubMed  Google Scholar 

  • Pisaric M, Carey S, Kokelj S, Youngblut D (2007) Anomalous 20th century tree growth, MackenzieDelta, Northwest Territories, Canada. Geophys Res Lett 34:L05714. doi:10.1029/2006GL029139

    Article  Google Scholar 

  • Schaberg IG, Snyder MC, Shane JB, Donnelly JR (2000) Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiol 20:549–555

    PubMed  CAS  Google Scholar 

  • Sergio R, Annie D, Tommaso A, Vinicio C (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152:1–12. doi:10.1007/s00442-006-0625-7

    Article  Google Scholar 

  • Shao XM, Huang L, Liu HB (2004) Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Sci China Ser Dokl Earth Sci 34(2):145–153

    Google Scholar 

  • Shao XM, Li EY, Huang L, Wang LL (2005) A 1437-year precipitation history from Qilian Juniper in the Northeastern Qinghai-Tibetan Plateau. PAGES News 13(2):14–15

    Google Scholar 

  • Shepherd A, Wingham D (2007) Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315(5818):1529–1532. doi:10.1126/science.1136776

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Liu Y, Vaganov EA, Li J, Cai Q (2008) Statistical and process-based modeling analyses of tree growth response to climate in semi-arid area of north central China: a case study of Pinus tabulaeformis. J Geophys Res 113:G01026. doi:10.1029/2007JG000547

    Article  Google Scholar 

  • Smith KT, Cufar K, Levanic T (1999) Temporal stability and dendroclimatology in silver fir and red spruce. Phyton Ann Rei Bot 39:117–122

    Google Scholar 

  • Solberg BO, Hofgaard A, Hytteborn H (2002) Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th century, central Norway. Ecoscience 9:79–88

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151. doi:10.1038/22087

    Article  CAS  Google Scholar 

  • Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:L09707. doi:10.1029/2005GL022574

    Article  Google Scholar 

  • Wang YJ, Chen FH, Gou XH, Du SY (2001) Study on response relationship between tree-ring and climate factors and climate reconstruction in middle region of Qilianshan Mountains. J Desert Res 21(2):135–140 (in Chinese)

    CAS  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846. doi:10.1126/science.1116448

    Article  PubMed  CAS  Google Scholar 

  • Wigley TL, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi :10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

    Article  Google Scholar 

  • Wilmking M, Myers-Smith I (2008) Changing climate sensitivity of black spruce in a peatland-forest landscape in interior Alaska. Dendrochronologia. doi:10.1016/j.dendro.2007.04.003

    Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10:1724–1736. doi:10.1111/j.1365-2486.2004.00826.x

    Article  Google Scholar 

  • Wilmking M, D’Arrigo R, Jacoby G, Juday G (2005) Divergent growth responses in circumpolar boreal forests. Geophys Res Lett 32:L15715. doi:10.1029/2005GLO23331

    Article  Google Scholar 

  • Wilson R, Elling W (2004) Temporal instability in tree-growth/climate response in the Lower Bavarian Forest region: implications for dendroclimatic reconstruction. Trees Struct Funct 18:19–28. doi:10.1007/s00468-003-0273-z

    Article  Google Scholar 

  • Wilson R, Luckman BH (2002) Tree-ring reconstruction of maximum and minimum temperatures and the diurnal temperature range in British Columbia, Canada. Dendrochronologia 20(3):257–268. doi:10.1078/1125-7865-00023

    Article  Google Scholar 

  • Wilson R, Luckman BH (2003) Dendroclimatic reconstruction of maximum summer temperatures from upper tree-line sites in interior British Columbia. Holocene 13(6):853–863. doi:10.1191/0959683603hl663rp

    Article  Google Scholar 

  • Yonenobu H, Eckstein D (2006) Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys Res Lett 33:L10701. doi:10.1029/2006GL026170

    Article  Google Scholar 

  • Yuan YJ, Jin LY, Shao XM (2003) Variations of the spring precipitation day numbers reconstructed from tree rings in the Urumqi River drainage, Tianshan Mts. over the last 370 years. Chin Sci Bull 48(14):1507–1510. doi:10.1360/02wd0251

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1

    Article  Google Scholar 

  • Zhang ZH, Wu XD (1996) The change and rapid shifts of moisture index and its annual variability since 1310 A.D. in Qilianshan area. Quat Sci 4:368–378 (in Chinese)

    Google Scholar 

  • Zhang ZH, Wu XD (1997) Reconstruction of climate variation in the last 700 years in the Qi Lian Mountain area using tree-ring data. Chin Sci Bull 42(8):849–851 (in Chinese)

    Google Scholar 

Download references

Acknowledgment

We thank Dr. Jayendra Singh and Jinbao Li for discussing and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wilmking, M. & Gou, X. Changing relationships between tree growth and climate in Northwest China. Plant Ecol 201, 39–50 (2009). https://doi.org/10.1007/s11258-008-9478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9478-y

Keywords

Navigation