Skip to main content

Advertisement

Log in

Landslide early succession in a neotropical dry forest

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Early succession on large landslides in highly humanized areas that have a tropical dry climate is not well studied. This study documented vegetation recovery during the first 4 years after disturbance at a landslide on Casita Volcano, Nicaragua. We aimed to determine the main pathways and causes of change in community features, such as richness, biovolume, and species composition and verify the role played by environmental heterogeneity. Data consisting on number, covers and mean height of woody species and several abiotic factors related to fertility and stability of substrates were obtained from permanent plots in previously defined zones. Pathways of early succession were highly contingent on abiotic heterogeneity and landscape context and were mainly controlled by abiotic factors associated with fertility of substrates, and incidence of human disturbances. Those results might form the basis of a model of early succession on landslides located in densely populated areas within tropical dry ecosystems. Our results suggest that, rather than focusing research on large-scale disturbances, the study of succession in landslides of the type that occurred on Casita Volcano must point towards the response of ecosystems to a much more complex disturbance regime, in which human-induced disturbances play a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aide TM, Cavelier J (1994) Barriers to lowland tropical forest restoration in the Sierra Nevada de Sta. Marta, Columbia. Restor Ecol 2:219–229

    Article  Google Scholar 

  • Aplet GH, Vitousek PM (1994) An age-altitude matrix analysis for Hawaiian rain-forest succession. J Ecol 82:134–147

    Google Scholar 

  • Avis AM, Lubke RA (1996) Dynamics and succession of coastal dune vegetation in the Eastern Cape, South Africa. Landsc Urban Plan 34:237–253

    Article  Google Scholar 

  • Bakker JP, Olff H, Willems JH et al (1996) Why do we need permanent plots in the study of long-term vegetation dynamics? J Veg Sci 7:149–156

    Google Scholar 

  • Bawa K, Kress W, Nadkarni N et al (2004) Beyond paradise—meeting the challenges in tropical biology in the 21st century. Biotropica 36(4):437–446

    Google Scholar 

  • Bazzaz FA (1979) The physiological ecology of plant succession. Annu Rev Ecol Syst 10:351–371

    Article  Google Scholar 

  • Beard JS (1953) The savanna vegetation of northern tropical America. Ecol Monogr 23:149–215

    Article  Google Scholar 

  • Bochet E, García-Fayos P (2004) Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restor Ecol 12(2):166–174

    Article  Google Scholar 

  • Carrière SM, Letourmy P, McKey DB (2002) Effects of remnant trees in fallows of diversity and structure forest regrowth in a slash-and burn agricultural system in southern Cameroon. J Trop Ecol 18:375–396

    Google Scholar 

  • Clark C, Poulsen J, Bolker B et al (2005) Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology 86(10):2684–2694

    Article  Google Scholar 

  • Cleary D, Priadjati A (2005) Vegetation responses to burning in a rain forest in Borneo. Plant Ecol 177(2):145–163

    Article  Google Scholar 

  • Cochrane MA, Schulze MD (1998) Forest fires in the Brazilian Amazon. Conserv Biol 12:948–949

    Google Scholar 

  • Corrales-Rodríguez D (1983) Impacto ecológico sobre los recursos naturales renovables de Centroamérica. Instituto de los Recursos Naturales y del Ambiente (IRENA), Managua

    Google Scholar 

  • Da Silva JM, Uhl C, Murray G (1996) Plant succession, landscape management, and the ecology of frugivorous birds in abandoned Amazonian pasture. Conserv Biol 10:491–503

    Article  Google Scholar 

  • Dale VH, Joyce LA, McNulty S et al (2000) The interplay between climate change, forests, and disturbances. Sci Total Environ 262(3):201–204

    Article  PubMed  CAS  Google Scholar 

  • Dalling JW (1994) Vegetation colonization of landslides in the Blue Mountains, Jamaica. Biotropica 26:392–399

    Article  Google Scholar 

  • Dalling JW, Tanner VJ (1995) An experimental study of regeneration on landslides in montane rainforest in Jamaica. J Ecol 83:55–64

    Article  Google Scholar 

  • Debussche M, Escarre J, Lepart J et al (1996) Changes in Mediterranean plant succession: old-fields revisited. J Veg Sci 7(4):519–526

    Article  Google Scholar 

  • del Moral R (1998) Early succession on Lahars spawned by Mount St Helens. Am J Bot 85(6):820–828

    Article  Google Scholar 

  • del Moral R (1999) Plant succession on pumice at Mount St. Helens, Washington. Am Midl Nat 141(1):101–114

    Article  Google Scholar 

  • del Moral R, Jones C (2002) Vegetation development on pumice at Mount St. Helens, USA. Plant Ecol 162(1):9–22

    Article  Google Scholar 

  • Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12(suppl):47–55

    Article  Google Scholar 

  • Francescato V, Scotton M, Zarin DJ et al (2001) Fifty years of natural revegetation on a landslide in Franconia Notch, New Hampshire, U.S.A. Can J Bot 79:1477–1485

    Article  Google Scholar 

  • García-Fayos P, Recatalá TM, Cerdá A et al (1995) Seed population dynamics on badland slopes in southeastern Spain. J Veg Sci 6:691–696

    Article  Google Scholar 

  • Garwood NC (1985) Earthquake-caused landslides in Panama: recovery of the vegetation. National Geographic Society Research Reports, vol 21. National Geographic Society, Washington DC, pp 181–184

  • Gerhardt K, Hytteborn H (1992) Natural dynamics and regeneration methods in tropical dry forests: an introduction. J Veg Sci 3:361–364

    Article  Google Scholar 

  • Gillespie TW, Grijalva A, Farris CN (2000) Diversity, composition and structure of tropical dry forests in Central America. Plant Ecol 147:37–47

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nunez AM et al (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479

    Article  PubMed  CAS  Google Scholar 

  • Guariguata MR (1990) Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. J Ecol 78:814–832

    Article  Google Scholar 

  • Holdridge LR (1967) Life zone ecology. Tropical Sciences Center, San José

    Google Scholar 

  • Hooper E, Legendre P, Condit R (2004) Factors affecting community composition of forest regeneration in deforested, abandoned land in Panama. Ecology 85(12):3313–3326

    Article  Google Scholar 

  • Hull JC, Scott RC (1982) Plant succession on debris avalanches of Nelson County, Virginia. Castanea 47:158–176

    Google Scholar 

  • Hupp CR (1983) Seedling establishment on a landslide site. Castanea 48:89–98

    Google Scholar 

  • Janzen DH (1988) Tropical dry forests, the most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington DC

    Google Scholar 

  • Jirón FA, Sánchez-Ríos MR (2003) Caracterización de suelos y oferta de semillas en diferentes sectores del deslave del Volcán Casita. Tesis de Maestría. Universidad Nacional Autónoma de Nicaragua – León, León

    Google Scholar 

  • Kerle N (2002) Volume estimation of the 1998 flank collapse at Casita volcano, Nicaragua: a comparison of photogrammetric and conventional techniques. Earth Surf Process Landf 27(7):759–772

    Article  Google Scholar 

  • Kent M, Coker P (1992) Vegetation description and analysis, a practical approach. Belhaven, London

    Google Scholar 

  • La Motte (1997) Combination soil kit (Model STH-14). (21620)

  • Langhenheim JH (1956) Plant succession on subalpine earthflow in Colorado. Ecology 37:301–317

    Article  Google Scholar 

  • Law R, Morton RD (1993) Alternative permanent states of ecological communities. Ecology 74:1347–1361

    Article  Google Scholar 

  • Lovett RA (2000) Mount St. Helens, revisited. Science 288:1578–1579

    Article  PubMed  CAS  Google Scholar 

  • Lundgren L (1978) Studies of soil and vegetation development on fresh landslide scars in the Mgeta Valley, Western Uluruga Mountains, Tanzania. Geogr Ann 60:91–120

    Article  Google Scholar 

  • Martin Y, Rood K, Schwab JW et al (2002) Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Can J Earth Sci 39(2):189–205

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1986) Ecology of tropical dry forest. Annu Rev Ecol Syst 17:67–68

    Article  Google Scholar 

  • Murphy PG, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge

    Google Scholar 

  • Myster RW (1993) Spatial heterogeneity of seed rain, seed pool, and vegetative cover on two Monteverde landslides, Costa Rica. Brenesia 39–40:137–145

    Google Scholar 

  • Myster RW, Fernández DS (1995) Spatial gradients and patch structure on two Puerto Rican landslides. Biotropica 27(2):149–159

    Article  Google Scholar 

  • Myster RW, Pickett STA (1992) Dynamics of associations between plants in ten old fields during 31 years of succession. J Ecol 80:291–302

    Article  Google Scholar 

  • Myster RW, Pickett STA (1994) A comparison of rate of succession over 18 yr in 10 contrasting old fields. Ecology 75(2):387–392

    Article  Google Scholar 

  • Myster RW, Walker LR (1997) Plant succesional pathways on Puerto Rican landslides. J Trop Ecol 13:165–173

    Google Scholar 

  • Nakamura T (1984) Vegetational recovery of landslide scars in the upper reaches of the Oi River, Central Japan. J Jpn For Soc 66(8):328–332

    Google Scholar 

  • Nathan R, Safriel UN, Noy-Meir I (2001) Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 83:374–388

    Article  Google Scholar 

  • Neeman G, Izhaki I (1996) Colonization in an abandoned East-Mediterranean vineyard. J Veg Sci 7(4):465–472

    Article  Google Scholar 

  • Nepstad DC, Uhl C, Cardosa da Silva JMC (1996) A comparative study of tree establishment in abandoned pasture and mature forest in eastern Amazonia. Oikos 76:25–39

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  PubMed  CAS  Google Scholar 

  • Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99:1–7

    Article  Google Scholar 

  • Pickett STA, McDonnell MJ (1989) Changing perspectives in community dynamics: a theory of successional forces. Trends Ecol Evol 4:241–245

    Article  Google Scholar 

  • Pickett STA, Ostfeld RS (1995) The shifting paradigm in ecology. In: Knight RL, Bates SF (eds) A new century for natural resources management. Island Press, Washington DC

    Google Scholar 

  • Pickett STA, White TS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York

    Google Scholar 

  • Pickett STA, Cadenasso ML, Bartha S (2001) Implications from the Buell-Small succession study for vegetation restoration. Appl Veg Sci 4:41–52

    Article  Google Scholar 

  • Pielke RA, Rubiera J, Landsea C et al (2003) Hurricane vulnerability in Latin America and the Caribbean: Normalized damage and loss potentials. Nat Hazards Rev 4(3):101–114

    Article  Google Scholar 

  • Prach K (1993) On the rate of succession. Oikos 66:343–346

    Article  Google Scholar 

  • Quigley MF, Platt WJ (2003) Composition and structure of seasonally deciduous forests in the Americas. Ecol Monogr 73(1):87–106

    Article  Google Scholar 

  • Restrepo C, Álvarez N (2006) Landslides and their contribution to land-cover in the mountains of Mexico and Central America. Biotropica 38(4):446–457

    Article  Google Scholar 

  • Rydin H, Borgegard SO (1988) Plant species richness on islands over a century of primary succession: Lake Hjälmaren. Ecology 69(4):916–927

    Article  Google Scholar 

  • Rydin H, Borgegard SO (1991) Plant characteristics over a century of primary succession on islands—Lake Hjälmaren. Ecology 72(3):1089–1101

    Article  Google Scholar 

  • Salas-Estrada JB (1999) Biodiversidad en Nicaragua, un estudio de país. Ministerio de los Recursos Naturales y del Ambiente (MARENA)–Ministerio Agropecuario y Forestal (MAGFOR), Managua

    Google Scholar 

  • Sanchez-Azofeifa GA, Quesada M, Rodriguez JP et al (2005) Research priorities for neotropical dry forests. Biotropica 37(4):477–485

    Article  Google Scholar 

  • Sarmiento L, Llambi LD, Escalona A et al (2003) Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol 166(1):63–74

    Article  Google Scholar 

  • Sheridan MF (1998) Report on the October 30, 1998 avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by hurricane Mitch. United States Geological Service (USGS), Washington DC

    Google Scholar 

  • Shiels AB, Walker LR (2003) Bird perches increase forest seeds on Puerto Rican landslides. Restor Ecol 11(4):457–465

    Article  Google Scholar 

  • Slocum MG (2001) How tree species differ as recruitment foci in a tropical pasture. Ecology 82(9):2547–2559

    Google Scholar 

  • Statsoft (2001) STATISTICA. Data analysis software system. 6. Tulsa (OK)

  • Stevens WD, Ulloa-Ulloa C, Pool A et al (2001) Flora de Nicaragua. Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for windows user′s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • Uhl C (1998) Propensity of fire in the humid tropics. Conserv Biol 12:942–943

    Google Scholar 

  • UNDP (2005) Human development report 2005. United Nations Development Program (UNDP), New York

    Google Scholar 

  • Velázquez E, Gómez-Sal A (2007) Environmental control of early succession on a large landslide in a tropical dry ecosystem. Biotropica 39(5):601–609

    Article  Google Scholar 

  • Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Google Scholar 

  • Walker LR, Zarin DJ, Fetcher N et al (1996) Ecosystem development and plant succession on landslides in the Caribbean. Biotropica 28(4a):566–576

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA et al (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742):1844–1846

    Article  PubMed  CAS  Google Scholar 

  • Whittaker RJ, Bush MB, Richards K (1989) Plant recolonization and vegetation succession on the Krakatu Islands, Indonesia. Ecol Monogr 59:59–123

    Article  Google Scholar 

  • Wiser SK, Peet RK, White PS (1996) The high elevation rock outcrop vegetation of the southern Appalachian mountains. J Veg Sci 7:703–722

    Article  Google Scholar 

  • Wu J, Loucks OL (1995) From balance of nature to hierarchical patch dynamics: a paradigm shift in Ecology. Q Rev Biol 70(4):439–466

    Article  Google Scholar 

Download references

Acknowledgements

This research is part of the Collaboration programme between the “Universidad de Alcalá” (Madrid, Spain) and the “Universidad Nacional Autónoma de Nicaragua-León” and is supported by a grant of the “3rd Scientific Research and Technological Innovation Program” from the Regional Authority of Madrid. Pedrarias Dávila and Aníbal Rodríguez were extremely helpful in fieldwork, and Ricardo Rueda and Dania Paguaga identified the species. We are very grateful to Sevilla family from the community of Pikin Guerrero for providing accommodation and supporting our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Velázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez, E., Gómez-Sal, A. Landslide early succession in a neotropical dry forest. Plant Ecol 199, 295–308 (2008). https://doi.org/10.1007/s11258-008-9433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9433-y

Keywords

Navigation