Skip to main content
Log in

Impact of body mass index on primary immunoglobulin A nephropathy prognosis: a systematic review and meta-analysis

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The impacts of body mass index (BMI) on the prognosis of primary IgA nephropathy (IgAN) remain controversial. This systematic review and meta-analysis aimed to solve these issues.

Methods

We searched the PubMed, EMBASE, and Cochrane Library to screen articles investigating the BMI and primary IgAN. BMI was classified according to the World Health Organization as high (≥ 25.0 kg/m2) and low (< 25.0 kg/m2). The baseline renal indexes and the incidences of adverse renal outcomes were focused on.

Results

Six studies with a total of 1723 patients were included in this study. High BMI was demonstrated to be associated with increased baseline levels of serum creatinine (weighted mean difference (WMD) 9.54, 95% confidence interval (CI) 0.63–18.45), blood uric acid (WMD 19.85, 95% CI 10.11–29.59) and urine protein (WMD 0.37, 95% CI 0.21–0.53). Patients with high BMI also showed compromised eGFR at diagnosis (WMD − 8.39, 95% CI − 11.62 to − 5.16) with a higher incidence rate of hypertension (odds ratios (OR) 2.59, 95% CI 1.44–4.66) and higher global optical scores (WMD 1.22, 95% CI 0.70–1.74). Regarding the prognosis, high BMI was significantly associated with the incidence of adverse renal outcomes (OR 2.43, 95% CI 1.66–3.55, P < 0.001) and deteriorated eGFR at the last follow-up (WMD − 11.10, 95% CI − 16.96 to − 5.25, P < 0.001), with non-significantly poorer renal disease-free survival (hazard ratio 1.79, 95% CI 0.58–5.50, P = 0.31).

Conclusion

High BMI was associated with severe onset and poor prognosis of primary IgAN. The management of BMI could be a novel method to promote the therapeutic outcomes of primary IgAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shao X, Li B, Cao L, Liang L, Yang J, Wang Y et al (2017) Evaluation of crescent formation as a predictive marker in immunoglobulin a nephropathy: a systematic review and meta-analysis. Oncotarget 8(28):46436–46448. https://doi.org/10.18632/oncotarget.17502

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodrigues JC, Haas M, Reich HN (2017) IgA nephropathy. Clin J Am Soc Nephrol 12(4):677–686. https://doi.org/10.2215/CJN.07420716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Di Vico MC, Messina M, Fop F, Barreca A, Segoloni GP, Biancone L (2018) Recurrent IgA nephropathy after renal transplantation and steroid withdrawal. Clin Transplant 32(4):e13207. https://doi.org/10.1111/ctr.13207

    Article  CAS  PubMed  Google Scholar 

  4. Barbour S, Reich H (2018) An update on predicting renal progression in IgA nephropathy. Curr Opin Nephrol Hypertens 27(3):214–220. https://doi.org/10.1097/MNH.0000000000000405

    Article  CAS  PubMed  Google Scholar 

  5. Wang P, Li Y, Sun H, Liu S, Zhang R, Liu X et al (2019) Predictive value of body mass index for Short-Term outcomes of patients with esophageal cancer after esophagectomy: a meta-analysis. Ann Surg Oncol 26(7):2090–2103. https://doi.org/10.1245/s10434-019-07331-w

    Article  PubMed  Google Scholar 

  6. Kachur S, Lavie CJ, de Schutter A, Milani RV, Ventura HO (2019) Obesity and cardiovascular diseases. Minerva Med 108(3):212–228. https://doi.org/10.23736/S0026-4806.17.05022-4

    Article  Google Scholar 

  7. Leitner DR, Fruhbeck G, Yumuk V, Schindler K, Micic D, Woodward E et al (2017) Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies—EASO can lead the way. Obes Facts 10(5):483–492. https://doi.org/10.1159/000480525

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ladhani M, Craig JC, Irving M, Clayton PA, Wong G (2017) Obesity and the risk of cardiovascular and all-cause mortality in chronic kidney disease: a systematic review and meta-analysis. Nephrol Dial Transplant 32(3):439–449. https://doi.org/10.1093/ndt/gfw075

    Article  CAS  PubMed  Google Scholar 

  9. Silva JG, Bentes AC, Daher EF, Matos SM (2017) Obesity and kidney disease. J Bras Nefrol 39(1):65–69. https://doi.org/10.5935/0101-2800.20170011

    Article  Google Scholar 

  10. Nagaraju SP, Rangaswamy D, Mareddy AS, Prasad S, Kaza S, Shenoy S et al (2018) Impact of body mass index on progression of primary immunoglobulin a nephropathy. Saudi J Kidney Dis Transpl 29(2):318–325. https://doi.org/10.4103/1319-2442.229261

    Article  PubMed  Google Scholar 

  11. Wu C, Wang AY, Li G, Wang L (2018) Association of high body mass index with development of interstitial fibrosis in patients with IgA nephropathy. Bmc Nephrol 19(1):381. https://doi.org/10.1186/s12882-018-1164-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouyang Y, Xie J, Yang M, Zhang X, Ren H, Wang W et al (2016) Underweight is an independent risk factor for renal function deterioration in patients with IgA nephropathy. PLoS ONE 11(9):e162044. https://doi.org/10.1371/journal.pone.0162044

    Article  CAS  Google Scholar 

  13. Berthoux F, Mariat C, Maillard N (2013) Overweight/obesity revisited as a predictive risk factor in primary IgA nephropathy. Nephrol Dial Transplant 28(Suppl 4):iv160–iv166. https://doi.org/10.1093/ndt/gft286

    Article  CAS  PubMed  Google Scholar 

  14. Kataoka H, Ohara M, Shibui K, Sato M, Suzuki T, Amemiya N et al (2012) Overweight and obesity accelerate the progression of IgA nephropathy: prognostic utility of a combination of BMI and histopathological parameters. Clin Exp Nephrol 16(5):706–712. https://doi.org/10.1007/s10157-012-0613-7

    Article  CAS  PubMed  Google Scholar 

  15. Bonnet F, Deprele C, Sassolas A, Moulin P, Alamartine E, Berthezene F et al (2001) Excessive body weight as a new independent risk factor for clinical and pathological progression in primary IgA nephritis. Am J Kidney Dis 37(4):720–727. https://doi.org/10.1016/s0272-6386(01)80120-7

    Article  CAS  PubMed  Google Scholar 

  16. Luo D, Wan X, Liu J et al (2018) Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 27:1785–1805. https://doi.org/10.1177/0962280216669183

    Article  PubMed  Google Scholar 

  17. Wan X, Wang W, Liu J et al (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  18. WHO expert consultation (2004) Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363(9403):157–163. https://doi.org/10.1016/s0140-6736(03)15268-3

    Article  Google Scholar 

  19. Wang Y, Beydoun MA, Min J, Xue H, Kaminsky LA, Cheskin LJ (2020) Has the prevalence of overweight, obesity and central obesity levelled off in the United States? Trends, patterns, disparities, and future projections for the obesity epidemic. Int J Epidemiol 49(3):810–823. https://doi.org/10.1093/ije/dyz273

    Article  PubMed  PubMed Central  Google Scholar 

  20. Puigdomenech PE, Robles N, Saigi-Rubio F, Zamora A, Moharra M, Paluzie G et al (2019) Assessment of the efficacy, safety, and effectiveness of weight control and obesity management mobile health interventions: systematic review. Jmir Mhealth Uhealth 7(10):e12612. https://doi.org/10.2196/12612

    Article  Google Scholar 

  21. Andonian C, Langer F, Beckmann J, Bischoff G, Ewert P, Freilinger S et al (2019) Overweight and obesity: an emerging problem in patients with congenital heart disease. Cardiovasc Diagn Ther 9(Suppl 2):S360–S368. https://doi.org/10.21037/cdt.2019.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  22. Andersen CJ, Murphy KE, Fernandez ML (2016) Impact of obesity and metabolic syndrome on immunity. Adv Nutr 7(1):66–75. https://doi.org/10.3945/an.115.010207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Emerenziani S, Guarino M, Trillo AL, Altomare A, Ribolsi M, Balestrieri P et al (2019) Role of overweight and obesity in gastrointestinal disease. Nutrients. https://doi.org/10.3390/nu12010111

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kovesdy CP, Furth S, Zoccali C (2017) Obesity and kidney disease: hidden consequences of the epidemic. Physiol Int 104(1):1–14. https://doi.org/10.1556/2060.104.2017.1.9

    Article  CAS  PubMed  Google Scholar 

  25. Foster MC, Hwang SJ, Larson MG, Lichtman JH, Parikh NI, Vasan RS et al (2018) Overweight, obesity, and the development of stage 3 CKD: The Framingham Heart Study. Am J Kidney Dis 52(1):39–48. https://doi.org/10.1053/j.ajkd.2008.03.003

    Article  Google Scholar 

  26. Chang A, Van Horn L, Jacobs DJ, Liu K, Muntner P, Newsome B et al (2013) Lifestyle-related factors, obesity, and incident microalbuminuria: The CARDIA (Coronary Artery Risk Development in Young Adults) study. Am J Kidney Dis 62(2):267–275. https://doi.org/10.1053/j.ajkd.2013.02.363

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lu JL, Molnar MZ, Naseer A, Mikkelsen MK, Kalantar-Zadeh K, Kovesdy CP (2015) Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol 3(9):704–714. https://doi.org/10.1016/S2213-8587(15)00128-X

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma X, Zhang C, Su H, Gong X, Kong X (2018) Increasing body mass index predicts rapid decline in renal function: a 5 year retrospective study. Horm Metab Res 50(7):556–561. https://doi.org/10.1055/a-0599-6360

    Article  CAS  PubMed  Google Scholar 

  29. Chang AR, Surapaneni A, Kirchner HL, Young A, Kramer HJ, Carey DJ et al (2018) Metabolically healthy obesity and risk of kidney function decline. Obesity (Silver Spring) 26(4):762–768. https://doi.org/10.1002/oby.22134

    Article  Google Scholar 

  30. Gigante A, Giannakakis K, Di Mario F, Barbano B, Rosato E, Pofi R et al (2018) BMI, nephroangiosclerosis and glomerulonephritis: is there any meeting point? Nephrology (Carlton) 23(11):991–996. https://doi.org/10.1111/nep.13155

    Article  CAS  Google Scholar 

  31. D’Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M et al (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12(8):453–471. https://doi.org/10.1038/nrneph.2016.75

    Article  CAS  PubMed  Google Scholar 

  32. Kalaitzidis RG, Siamopoulos KC (2011) The role of obesity in kidney disease: recent findings and potential mechanisms. Int Urol Nephrol 43(3):771–784. https://doi.org/10.1007/s11255-011-9974-1

    Article  PubMed  Google Scholar 

  33. Hong YA, Min JW, Ha MA et al (2020) The impact of obesity on the severity of clinicopathologic parameters in patients with IgA nephropathy. J Clin Med 9(9):2824. https://doi.org/10.3390/jcm9092824

    Article  CAS  PubMed Central  Google Scholar 

  34. Tanaka M, Yamada S, Iwasaki Y et al (2009) Impact of obesity on IgA nephropathy: comparative ultrastructural study between obese and non-obese patients. Nephron Clin Pract 112(2):c71–c78. https://doi.org/10.1159/000213084

    Article  CAS  PubMed  Google Scholar 

  35. Kittiskulnam P, Kanjanabuch T, Tangmanjitjaroen K, Chancharoenthana W, Praditpornsilpa K, Eiam-Ong S (2014) The beneficial effects of weight reduction in overweight patients with chronic proteinuric immunoglobulin a nephropathy: a randomized controlled trial. J Ren Nutr 24(3):200–207. https://doi.org/10.1053/j.jrn.2014.01.016

    Article  PubMed  Google Scholar 

  36. Shahar A, Shahar D, Kahar Y, Nitzan-Kalusky D (2005) Low-weight and weight loss as predictors of morbidity and mortality in old age. Harefuah 144(6): 443–448, 452

  37. Thorogood M, Appleby PN, Key TJ, Mann J (2003) Relation between body mass index and mortality in an unusually slim cohort. J Epidemiol Commun Health 57(2):130–133. https://doi.org/10.1136/jech.57.2.130

    Article  CAS  Google Scholar 

  38. Gupta R, Knobel D, Gunabushanam V, Agaba E, Ritter G, Marini C et al (2011) The effect of low body mass index on outcome in critically ill surgical patients. Nutr Clin Pract 26(5):593–597. https://doi.org/10.1177/0884533611419666

    Article  PubMed  Google Scholar 

  39. Castaneda C, Charnley JM, Evans WJ, Crim MC (1995) Elderly women accommodate to a low-protein diet with losses of body cell mass, muscle function, and immune response. Am J Clin Nutr 62(1):30–39. https://doi.org/10.1093/ajcn/62.1.30

    Article  CAS  PubMed  Google Scholar 

  40. Wang PY, Li Y, Wang Q (2020) Sarcopenia: an underlying treatment target during the COVID-19 pandemic. Nutrition 84:111104. https://doi.org/10.1016/j.nut.2020.111104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr 29(2):154–159. https://doi.org/10.1016/j.clnu.2009.12.004

    Article  CAS  PubMed  Google Scholar 

  42. Rondanelli M, Klersy C, Terracol G et al (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103(3):830–840. https://doi.org/10.3945/ajcn.115.113357

    Article  CAS  PubMed  Google Scholar 

  43. Bauer JM, Verlaan S, Bautmans I et al (2015) Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 16(9):740–747. https://doi.org/10.1016/j.jamda.2015.05.021

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was funded by the Medical Science and Technology Research Project of Henan Province (SB201901042) and the Medical Science and Technology Research Project of Henan Province (SBGJ202003050).

Author information

Authors and Affiliations

Authors

Contributions

QW, WD, PS, and JZ: research idea and study design; QW, WD, HZ, and JW: data acquisition; QW, WD, HZ, and PS: data analysis/interpretation; QW, WD, JW, and JZ: statistical analysis; HZ, PS, JW, and JZ: supervision or mentorship. Each author contributed important intellectual content during manuscript drafting or revision.

Corresponding author

Correspondence to Jian-jiang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

All codes used were provided in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhang, Jj., Dou, Wj. et al. Impact of body mass index on primary immunoglobulin A nephropathy prognosis: a systematic review and meta-analysis. Int Urol Nephrol 54, 1067–1078 (2022). https://doi.org/10.1007/s11255-021-02978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02978-5

Keywords

Navigation