Skip to main content

Advertisement

Log in

Melatonin ingestion before intradialytic exercise improves immune responses in hemodialysis patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The present study aimed to investigate the effects of melatonin (MEL) intake on systemic inflammation and immune responses during intradialytic exercise.

Methods

Thirteen hemodialysis (HD) patients volunteered to participate in the current randomized-crossover study. Immunological responses were monitored in four HD sessions at different conditions: [Exercise (EX) + MEL], [EX + Placebo (PLA)], [Control (CON) + MEL] and [CON + PLA]. MEL (3 mg) or PLA was ingested 1 h before starting exercise or the equivalent time in CON condition. During all sessions, peripheral blood samples were collected to assess c-reactive protein, complete blood count, and immune cells phenotypes before HD (T0), immediately after exercise (T1) and 1 h after exercise (T2) or at corresponding times in the CON condition.

Results

HD therapy induced a significant decrease in natural killer (NK) (p = 0.001, d = 0.85; p < 0.001, d = 1.19, respectively) and CD8+ T-lymphocytes rates (p = 0.001, d = 0.57; p < 0.001, d = 0.75, respectively) at T1 and T2 compared to T0. MEL intake prevented the decrease in NK and CD8+ T-lymphocytes, increased the proportion of CD4+ T-lymphocytes at T1 and T2 compared to T0 (p = 0.002, d = 1.18; p = 0.001, d = 1.04, respectively) and decreased the proportion of CD14++CD16+ Monocytes at T2 compared to T0 (p = 0.02, d = 1.57) in peripheral blood during HD therapy. Similar results were found in [EX + MEL] and [EX + PLA] conditions.

Conclusion

This pilot study provides the first evidence that MEL intake alone or associated with intradialytic exercise displays potential immunoregulatory and anti-inflammatory effects. The combination of MEL with intradialytic exercise may be an appropriate anti-inflammatory therapy for HD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Betjes MGH (2013) Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol 9:255–265

    Article  CAS  Google Scholar 

  2. Fuhro MI, Dorneles GP, Andrade FP, Romao PRT, Peres A, Monteiro MB (2018) Acute exercise during hemodialysis prevents the decrease in natural killer cells in patients with chronic kidney disease: a pilot study. Int Urol Nephrol 50(3):527–534. https://doi.org/10.1007/s11255-017-1747-z

    Article  PubMed  Google Scholar 

  3. Meijers RW, Litjens NH, de Wit EA, Langerak AW, Baan CC, Betjes MG (2014) Uremia-associated immunological aging is stably imprinted in the T-cell system and not reversed by kidney transplantation. Transplant international : official journal of the European Society for Organ Transplantation 27(12):1272–1284. https://doi.org/10.1111/tri.12416

    Article  CAS  Google Scholar 

  4. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A (2005) Human natural killer cells: Molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 100(1):7–13. https://doi.org/10.1016/j.imlet.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  5. Raska K Jr, Raskova J, Shea SM, Frankel RM, Wood RH, Lifter J, Ghobrial I, Eisinger RP, Homer L (1983) T cell subsets and cellular immunity in end-stage renal disease. Am J Med 75(5):734–740

    Article  Google Scholar 

  6. Girndt M, Kohler H, Schiedhelm-Weick E, Schlaak JF, Meyer zum Buschenfelde KH, Fleischer B (1995) Production of interleukin-6, tumor necrosis factor alpha and interleukin-10 in vitro correlates with the clinical immune defect in chronic hemodialysis patients. Kidney Int 47(2):559–565

    Article  CAS  Google Scholar 

  7. Avesani CM, Trolonge S, Deleaval P, Baria F, Mafra D, Faxen-Irving G, Chauveau P, Teta D, Kamimura MA, Cuppari L, Chan M, Heimburger O, Fouque D (2012) Physical activity and energy expenditure in haemodialysis patients: an international survey. Nephrol Dialysis Transplant 27(6):2430–2434. https://doi.org/10.1093/ndt/gfr692

    Article  Google Scholar 

  8. Torino C, Manfredini F, Bolignano D, Aucella F, Baggetta R, Barilla A, Battaglia Y, Bertoli S, Bonanno G, Castellino P, Ciurlino D, Cupisti A, D'Arrigo G, De Paola L, Fabrizi F, Fatuzzo P, Fuiano G, Lombardi L, Lucisano G, Messa P, Rapana R, Rapisarda F, Rastelli S, Rocca-Rey L, Summaria C, Zuccala A, Tripepi G, Catizone L, Zoccali C, Mallamaci F, Group EW (2014) Physical performance and clinical outcomes in dialysis patients: a secondary analysis of the EXCITE trial. Kidney Blood Press Res 39(2–3):205–211. https://doi.org/10.1159/000355798

    Article  PubMed  Google Scholar 

  9. Peres A, Perotto DL, Dorneles GP, Fuhro MI, Monteiro MB (2015) Effects of intradialytic exercise on systemic cytokine in patients with chronic kidney disease. Ren Fail 37(9):1430–1434. https://doi.org/10.3109/0886022X.2015.1074473

    Article  CAS  PubMed  Google Scholar 

  10. Cheema BS, Abas H, Smith BC, O'Sullivan AJ, Chan M, Patwardhan A, Kelly J, Gillin A, Pang G, Lloyd B, Berger K, Baune BT, Fiatarone Singh MA (2011) Effect of resistance training during hemodialysis on circulating cytokines: a randomized controlled trial. Eur J Appl Physiol 111(7):1437–1445. https://doi.org/10.1007/s00421-010-1763-5

    Article  CAS  PubMed  Google Scholar 

  11. Dungey M, Bishop NC, Young HM, Burton JO, Smith AC (2015) The impact of exercising during haemodialysis on blood pressure, markers of cardiac injury and systemic inflammation-preliminary results of a pilot study. Kidney Blood Press Res 40(6):593–604. https://doi.org/10.1159/000368535

    Article  CAS  PubMed  Google Scholar 

  12. Vaziri ND, Oveisi F, Reyes GA, Zhou XJ (1996) Dysregulation of melatonin metabolism in chronic renal insufficiency: role of erythropoietin-deficiency anemia. Kidney Int 50(2):653–656

    Article  CAS  Google Scholar 

  13. Macchi MM, Bruce JN (2004) Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol 25(3–4):177–195. https://doi.org/10.1016/j.yfrne.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Espino J, Bejarano I, Paredes SD, Barriga C, Rodriguez AB, Pariente JA (2011) Protective effect of melatonin against human leukocyte apoptosis induced by intracellular calcium overload: relation with its antioxidant actions. J Pineal Res 51(2):195–206. https://doi.org/10.1111/j.1600-079X.2011.00876.x

    Article  CAS  PubMed  Google Scholar 

  15. Russcher M, Koch B, Nagtegaal E, van der Putten K, ter Wee P, Gaillard C (2012) The role of melatonin treatment in chronic kidney disease. Front Biosci 17:2644–2656

    Article  Google Scholar 

  16. Simko F, Reiter RJ, Pechanova O, Paulis L (2013) Experimental models of melatonin-deficient hypertension. Front Biosci 18:616–625

    Article  CAS  Google Scholar 

  17. Maldonado M, Manfredi M, Ribas-Serna J, Garcia-Moreno H, Calvo J (2012) Melatonin administrated immediately before an intense exercise reverses oxidative stress, improves immunological defenses and lipid metabolism in football players. Physiol Behav 105(5):1099–1103

    Article  CAS  Google Scholar 

  18. Alonso M, Collado PS, Gonzalez-Gallego J (2006) Melatonin inhibits the expression of the inducible isoform of nitric oxide synthase and nuclear factor kappa B activation in rat skeletal muscle. J Pineal Res 41(1):8–14. https://doi.org/10.1111/j.1600-079X.2006.00323.x

    Article  CAS  PubMed  Google Scholar 

  19. Phillipson OT (2014) Management of the aging risk factor for Parkinson's disease. Neurobiol Aging 35(4):847–857

    Article  Google Scholar 

  20. Caballero B, Vega-Naredo I, Sierra V, Huidobro-Fernandez C, Soria-Valles C, De Gonzalo-Calvo D, Tolivia D, Gutierrez-Cuesta J, Pallas M, Camins A, Rodriguez-Colunga MJ, Coto-Montes A (2008) Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J Pineal Res 45(3):302–311. https://doi.org/10.1111/j.1600-079X.2008.00591.x

    Article  CAS  PubMed  Google Scholar 

  21. Beck W, Scariot P, Gobatto C (2016) Melatonin is an ergogenic aid for exhaustive aerobic exercise only during the wakefulness period. Int J Sports Med 37(01):71–76

    CAS  PubMed  Google Scholar 

  22. Koch BC, van der Putten K, Van Someren EJ, Wielders JP, Ter Wee PM, Nagtegaal JE, Gaillard CA (2010) Impairment of endogenous melatonin rhythm is related to the degree of chronic kidney disease (CREAM study). Nephrol Dialysis Transplant 25(2):513–519. https://doi.org/10.1093/ndt/gfp493

    Article  CAS  Google Scholar 

  23. Koch BC, Nagtegaal JE, Hagen EC, van der Westerlaken MM, Boringa JB, Kerkhof GA, Ter Wee PM (2009) The effects of melatonin on sleep-wake rhythm of daytime haemodialysis patients: a randomized, placebo-controlled, cross-over study (EMSCAP study). Br J Clin Pharmacol 67(1):68–75. https://doi.org/10.1111/j.1365-2125.2008.03320.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nelson RJ, Demas GE, Klein SL, Kriegsfeld LJ (1995) The influence of season, photoperiod, and pineal melatonin on immune function. J Pineal Res 19(4):149–165. https://doi.org/10.1111/j.1600-079x.1995.tb00184.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pozo D, Garcia-Maurino S, Guerrero JM, Calvo JR (2004) mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells. J Pineal Res 37(1):48–54. https://doi.org/10.1111/j.1600-079X.2004.00135.x

    Article  CAS  PubMed  Google Scholar 

  26. Beck TW (2013) The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res 27(8):2323–2337. https://doi.org/10.1519/JSC.0b013e318278eea0

    Article  PubMed  Google Scholar 

  27. Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  Google Scholar 

  28. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14(5):377–381

    Article  CAS  Google Scholar 

  29. Gellish RLGB, Olson RE, McDonald A, Russi GD, Moudgil VK (2007) Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc 39:822–829

    Article  Google Scholar 

  30. Russcher M, Koch BC, Nagtegaal JE, van Ittersum FJ, Pasker-de Jong PC, Hagen EC, van Dorp WT, Gabreels B, Wildbergh TX, van der Westerlaken MM, Gaillard CA, Ter Wee PM (2013) Long-term effects of melatonin on quality of life and sleep in haemodialysis patients (Melody study): a randomized controlled trial. Br J Clin Pharmacol 76(5):668–679. https://doi.org/10.1111/bcp.12093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hartter S, Grozinger M, Weigmann H, Roschke J, Hiemke C (2000) Increased bioavailability of oral melatonin after fluvoxamine coadministration. Clin Pharmacol Ther 67(1):1–6. https://doi.org/10.1067/mcp.2000.104071

    Article  CAS  PubMed  Google Scholar 

  32. Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248. https://doi.org/10.1152/jappl.1974.37.2.247

    Article  CAS  PubMed  Google Scholar 

  33. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale

    Google Scholar 

  34. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, Gonzalez-Gallego J (2013) A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 54(1):1–14. https://doi.org/10.1111/j.1600-079X.2012.01014.x

    Article  CAS  PubMed  Google Scholar 

  35. Barjavel MJ, Mamdouh Z, Raghbate N, Bakouche O (1998) Differential expression of the melatonin receptor in human monocytes. J Immunol 160(3):1191–1197

    CAS  PubMed  Google Scholar 

  36. Fjaerli O, Lund T, Osterud B (1999) The effect of melatonin on cellular activation processes in human blood. J Pineal Res 26(1):50–55

    Article  CAS  Google Scholar 

  37. Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M (2008) The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes. Brain Behav Immun 22(7):1066–1071. https://doi.org/10.1016/j.bbi.2008.03.006

    Article  CAS  PubMed  Google Scholar 

  38. Heine GH, Ulrich C, Seibert E, Seiler S, Marell J, Reichart B, Krause M, Schlitt A, Köhler H, Girndt M (2008) CD14(++)CD16+ monocytes but not total monocyte numbers predict cardiovascular events in dialysis patients. Kidney Int 73(5):622–629

    Article  CAS  Google Scholar 

  39. Currier NL, Sun LZ, Miller SC (2000) Exogenous melatonin: quantitative enhancement in vivo of cells mediating non-specific immunity. J Neuroimmunol 104(2):101–108

    Article  CAS  Google Scholar 

  40. Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJ (2006) The role of melatonin in immuno-enhancement: potential application in cancer. Int J Exp Pathol 87(2):81–87. https://doi.org/10.1111/j.0959-9673.2006.00474.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kvetnoy IM (1999) Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J 31:1–12

    Article  CAS  Google Scholar 

  42. Lissoni P, Rovelli F, Brivio F, Brivio O, Fumagalli L (1998) Circadian secretions of IL-2, IL-12, IL-6 and IL-10 in relation to the light/dark rhythm of the pineal hormone melatonin in healthy humans. Nat Immun 16(1):1–5

    Article  CAS  Google Scholar 

  43. Pedersen L, Idorn M, Olofsson GH, Lauenborg B, Nookaew I, Hansen RH, Johannesen HH, Becker JC, Pedersen KS, Dethlefsen C, Nielsen J, Gehl J, Pedersen BK, Thor Straten P, Hojman P (2016) Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution. Cell Metab 23(3):554–562. https://doi.org/10.1016/j.cmet.2016.01.011

    Article  CAS  PubMed  Google Scholar 

  44. Timmons BW, Cieslak T (2008) Human natural killer cell subsets and acute exercise: a brief review. Exerc Immunol Rev 14:8–23

    PubMed  Google Scholar 

  45. Yoon JW, Gollapudi S, Pahl MV, Vaziri ND (2006) Naive and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int 70(2):371–376. https://doi.org/10.1038/sj.ki.5001550

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Mauriño S, Gonzalez-Haba MG, Calvo JR, Rafii-El-Idrissi M, Sanchez-Margalet V, Goberna R, Guerrero JM (1997) Melatonin enhances IL-2, IL-6, and IFN-gamma production by human circulating CD4+ cells: a possible nuclear receptor-mediated mechanism involving T helper type 1 lymphocytes and monocytes. J Immunol 159(2):574–581

    PubMed  Google Scholar 

  47. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, Peng Y, Li T, Reiter RJ, Yin Y (2017) Melatonin signaling in T cells: functions and applications. J Pineal Res. https://doi.org/10.1111/jpi.12394

    Article  PubMed  Google Scholar 

  48. Brazao V, Santello FH, Filipin Mdel V, Azevedo AP, Toldo MP, de Morais FR, do Prado Jr JC (2015) Immunoregulatory actions of melatonin and zinc during chronic Trypanosoma cruzi infection. J Pineal Res 58(2):210–218. https://doi.org/10.1111/jpi.12207

    Article  CAS  PubMed  Google Scholar 

  49. Viana JL, Kosmadakis GC, Watson EL, Bevington A, Feehally J, Bishop NC, Smith AC (2014) Evidence for anti-inflammatory effects of exercise in CKD. J Am Soc Nephrol 25(9):2121–2130. https://doi.org/10.1681/ASN.2013070702

    Article  PubMed  PubMed Central  Google Scholar 

  50. Idorn M, Hojman P (2016) Exercise-dependent regulation of NK cells in cancer protection. Trends Mol Med 22(7):565–577. https://doi.org/10.1016/j.molmed.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  51. Rhind SG, Gannon GA, Shek PN, Brenner IK, Severs Y, Zamecnik J, Buguet A, Natale VM, Shephard RJ, Radomski MW (1999) Contribution of exertional hyperthermia to sympathoadrenal-mediated lymphocyte subset redistribution. J Appl Physiol 87(3):1178–1185. https://doi.org/10.1152/jappl.1999.87.3.1178

    Article  CAS  PubMed  Google Scholar 

  52. Panichi V, Migliori M, De Pietro S, Taccola D, Bianchi AM, Norpoth M, Metelli MR, Giovannini L, Tetta C, Palla R (2001) C reactive protein in patients with chronic renal diseases. Ren Fail 23(3–4):551–562. https://doi.org/10.1081/jdi-100104737

    Article  CAS  PubMed  Google Scholar 

  53. Eleftheriadis T, Kartsios C, Yiannaki E, Kazila P, Antoniadi G, Liakopoulos V, Markala D (2008) Chronic inflammation and CD16+ natural killer cell zeta-chain downregulation in hemodialysis patients. Blood Purif 26(4):317–321. https://doi.org/10.1159/000130068

    Article  CAS  PubMed  Google Scholar 

  54. Katabathina V, Menias CO, Pickhardt P, Lubner M, Prasad SR (2016) Complications of immunosuppressive therapy in solid organ transplantation. Radiol Clin North Am 54(2):303–319. https://doi.org/10.1016/j.rcl.2015.09.009

    Article  PubMed  Google Scholar 

  55. Patel R, Paya CV (1997) Infections in solid-organ transplant recipients. Clin Microbiol Rev 10(1):86–124

    Article  CAS  Google Scholar 

  56. Maestroni GJ, Conti A, Pierpaoli W (1988) Pineal melatonin, its fundamental immunoregulatory role in aging and cancer. Ann N Y Acad Sci 521:140–148. https://doi.org/10.1111/j.1749-6632.1988.tb35272.x

    Article  CAS  PubMed  Google Scholar 

  57. Inserra P, Zhang Z, Ardestani SK, Araghi-Niknam M, Liang B, Jiang S, Shaw D, Molitor M, Elliott K, Watson RR (1998) Modulation of cytokine production by dehydroepiandrosterone (DHEA) plus melatonin (MLT) supplementation of old mice. Proc Soc Exp Biol Med Soc Exp Biol Med 218(1):76–82. https://doi.org/10.3181/00379727-218-44270

    Article  CAS  Google Scholar 

  58. Maestroni GJ, Conti A, Pierpaoli W (1987) Role of the pineal gland in immunity: II. Melatonin enhances the antibody response via an opiatergic mechanism. Clin Exp Immunol 68(2):384–391

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jung FJ, Yang L, Harter L, Inci I, Schneiter D, Lardinois D, Keel M, Weder W, Korom S (2004) Melatonin in vivo prolongs cardiac allograft survival in rats. J Pineal Res 37(1):36–41. https://doi.org/10.1111/j.1600-079X.2004.00133.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all the participants for accepting to be part of our sample population. Our thanks also go to Galpharma Laboratories, Sfax, Tunisia for kindly providing placebo.

Funding

No funding source or industrial links and affiliations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by HM, OH, IBD, RM, MT, HH. The first draft of the manuscript was written by HM, OH, IBD, HH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Omar Hammouda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study received approval from the south institutional human research ethics committee (N°0059/2017) and followed the ethical principles of the Declaration of Helsinki (2013).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, H., Hammouda, O., Ben Dhia, I. et al. Melatonin ingestion before intradialytic exercise improves immune responses in hemodialysis patients. Int Urol Nephrol 53, 553–562 (2021). https://doi.org/10.1007/s11255-020-02643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-020-02643-3

Keywords

Navigation