Skip to main content

Advertisement

Log in

Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: role of abnormal apoptosis

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Introduction

Genistein is recognized as a potent anti-oxidant in soybean-enriched foods, which is a kind of phytoestrogen involved in anticancer activity in various cancers.

Objective

The objective of this study was to investigate the molecular mechanism of CDKN2a hypomethylation involved in the anti-tumor effect of genistein on kidney cancer.

Methods

The CDKN2a expression was measured using qRT-PCR. The level of CDKN2a methylation was detected using methylation-specific PCR. The apoptosis was detected via flow-cytometric analysis. The cell viability was detected using the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Results

Our results indicated that genistein induced cell apoptosis and inhibited the cell proliferation of kidney cancer cells. Moreover, genistein increased the expression of CDKN2a and decreased CDKN2a methylation.

Conclusions

Our results demonstrated that the anti-tumor effect of genistein might induce cell apoptosis and inhibit the proliferation of kidney cancer cells via regulating CDKN2a methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Georgetti SR, Casagrande R, Vicentini FT, Baracat MM, Verri WA Jr, Fonseca MJ (2013) Protective effect of fermented soybean dried extracts against TPA-induced oxidative stress in hairless mice skin. Biomed Res Int 2013:340626

    Article  Google Scholar 

  2. Ardito F, Di Gioia G, Pellegrino MR, Muzio LL (2018) Genistein as a potential anticancer agent against head and neck squamous cell carcinoma. Curr Top Med Chem 18:174–181

    Article  CAS  Google Scholar 

  3. Jiang T, Wang XQ, Ding C, Du XL (2017) Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling. Korean J Physiol Pharmacol 21:579–589

    Article  CAS  Google Scholar 

  4. Gong DK, Liu BH, Tan XH (2015) Genistein prevents cadmium-induced neurotoxic effects through its antioxidant mechanisms. Drug Res 65:65–69

    CAS  Google Scholar 

  5. Yang TT, Liu CG, Gao SC, Zhang Y, Wang PC (2018) The serum exosome derived MicroRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31:87–96

    PubMed  Google Scholar 

  6. Ahn SY, Jo MS, Lee D et al (2019) Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorg Chem 83:135–144

    Article  CAS  Google Scholar 

  7. Kamalakaran S, Varadan V, Giercksky Russnes HE et al (2011) DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol 5:77–92

    Article  CAS  Google Scholar 

  8. Brzezianska E, Dutkowska A, Antczak A (2013) The significance of epigenetic alterations in lung carcinogenesis. Mol Biol Rep 40:309–325

    Article  CAS  Google Scholar 

  9. Caplakova V, Babusikova E, Blahovcova E, Balharek T, Zelieskova M, Hatok J (2016) DNA methylation machinery in the endometrium and endometrial cancer. Anticancer Res 36:4407–4420

    Article  CAS  Google Scholar 

  10. Ma HL, Yu SJ, Chen J et al (2019) CA8 promotes RCC proliferation and migration though its expression level is lower in tumor compared to adjacent normal tissue. Biomed Pharmacother 121:109578

    Article  Google Scholar 

  11. Udayakumar D, Mahato B, Gabree M, Tsao H (2010) Genetic determinants of cutaneous melanoma predisposition. Semin Cutan Med Surg 29:190–195

    Article  CAS  Google Scholar 

  12. Freedberg DE, Rigas SH, Russak J et al (2008) Frequent p16-independent inactivation of p14ARF in human melanoma. J Natl Cancer Inst 100:784–795

    Article  CAS  Google Scholar 

  13. Sherr CJ (2004) Principles of tumor suppression. Cell 116:235–246

    Article  CAS  Google Scholar 

  14. Alhasan SA, Pietrasczkiwicz H, Alonso MD, Ensley J, Sarkar FH (1999) Genistein-induced cell cycle arrest and apoptosis in a head and neck squamous cell carcinoma cell line. Nutr Cancer 34:12–19

    Article  CAS  Google Scholar 

  15. Nosaka K, Maeda M, Tamiya S, Sakai T, Mitsuya H, Matsuoka M (2000) Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Can Res 60:1043–1048

    CAS  Google Scholar 

  16. Tam KW, Zhang W, Soh J et al (2013) CDKN2A/p16 inactivation mechanisms and their relationship to smoke exposure and molecular features in non-small-cell lung cancer. J Thorac Oncol 8:1378–1388

    Article  CAS  Google Scholar 

  17. Pierini S, Jordanov SH, Mitkova AV et al (2014) Promoter hypermethylation of CDKN2A, MGMT, MLH1, and DAPK genes in laryngeal squamous cell carcinoma and their associations with clinical profiles of the patients. Head Neck 36:1103–1108

    Article  Google Scholar 

  18. Csepregi A, Ebert MP, Rocken C et al (2010) Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC Cancer 10:317

    Article  Google Scholar 

  19. Sinha S, Chunder N, Mukherjee N et al (2008) Frequent deletion and methylation in SH3GL2 and CDKN2A loci are associated with early- and late-onset breast carcinoma. Ann Surg Oncol 15:1070–1080

    Article  Google Scholar 

  20. Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and p16INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353

    CAS  PubMed  Google Scholar 

  21. Yang J, Bai WL, Chen YJ, Gao A (2015) 1,4-benzoquinone-induced STAT-3 hypomethylation in AHH-1 cells: role of oxidative stress. Toxicol Rep 2:864–869

    Article  CAS  Google Scholar 

  22. Baxa DM, Luo X, Yoshimura FK (2005) Genistein induces apoptosis in T lymphoma cells via mitochondrial damage. Nutr Cancer 51:93–101

    Article  CAS  Google Scholar 

  23. Spagnuolo C, Russo GL, Orhan IE et al (2015) Genistein and cancer: current status, challenges, and future directions. Adv Nutr 6:408–419

    Article  CAS  Google Scholar 

  24. Tang Q, Ma J, Sun J et al (2018) Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 40(2):579–588

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Maghrebi M, Renno WM (2016) Genistein alleviates testicular ischemia and reperfusion injury-induced spermatogenic damage and oxidative stress by suppressing abnormal testicular matrix metalloproteinase system via the Notch 2/Jagged 1/Hes-1 and caspase-8 pathways. J Physiol Pharmacol 67:129–137

    CAS  PubMed  Google Scholar 

  26. Stenvinkel P, Luttropp K, McGuinness D et al (2017) CDKN2A/p16INK4(a) expression is associated with vascular progeria in chronic kidney disease. Aging 9:494–507

    Article  CAS  Google Scholar 

  27. Liu K, Zhao C, Chen J et al (2016) Overexpression of SEPP1 inhibits the proliferation and induces cell cycle G2/M arrest of 786-O and 769-P human renal carcinoma cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 32:764–769

    PubMed  Google Scholar 

  28. Pan T, Fong EL, Martinez M et al (2015) Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Lett 365:89–95

    Article  CAS  Google Scholar 

  29. Ricketts CJ, Morris MR, Gentle D et al (2013) Methylation profiling and evaluation of demethylating therapy in renal cell carcinoma. Clin Epigenet 5:16

    Article  Google Scholar 

  30. Deng D, Liu Z, Du Y (2010) Epigenetic alterations as cancer diagnostic, prognostic, and predictive biomarkers. Adv Genet 71:125–176

    Article  CAS  Google Scholar 

  31. Lasseigne BN, Brooks JD (2018) The role of DNA methylation in renal cell carcinoma. Mol Diagn Ther 22(4):431–442

    Article  CAS  Google Scholar 

  32. Kanai Y (2010) Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 101:36–45

    Article  CAS  Google Scholar 

  33. Al-Saran N, Subash-Babu P, Al-Nouri DM, Alfawaz HA, Alshatwi AA (2016) Zinc enhances CDKN2A, pRb1 expression and regulates functional apoptosis via upregulation of p53 and p21 expression in human breast cancer MCF-7 cell. Environ Toxicol Pharmacol 47:19–27

    Article  CAS  Google Scholar 

  34. Hui KF, Leung YY, Yeung PL, Middeldorp JM, Chiang AK (2014) Combination of SAHA and bortezomib up-regulates CDKN2A and CDKN1A and induces apoptosis of Epstein-Barr virus-positive Wp-restricted Burkitt lymphoma and lymphoblastoid cell lines. Br J Haematol 167:639–650

    Article  CAS  Google Scholar 

  35. Gossner G, Choi M, Tan L et al (2007) Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol 105:23–30

    Article  CAS  Google Scholar 

  36. Shafiee G, Saidijam M, Tavilani H, Ghasemkhani N, Khodadadi I (2016) Genistein induces apoptosis and inhibits proliferation of HT29 colon cancer cells. Int J Mol Cell Med 5:178–191

    PubMed  PubMed Central  Google Scholar 

  37. Chen HH, Chen SP, Zheng QL et al (2018) Genistein promotes proliferation of human cervical cancer cells through estrogen receptor-mediated PI3K/Akt-NF-kappaB pathway. J Cancer 9:288–295

    Article  Google Scholar 

  38. Yang YM, Yang Y, Dai WW, Li XM, Ma JQ, Tang LP (2016) Genistein-induced apoptosis is mediated by endoplasmic reticulum stress in cervical cancer cells. Eur Rev Med Pharmacol Sci 20:3292–3296

    PubMed  Google Scholar 

  39. The Cancer Genome Atlas Research Network (2016) Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med 374:135–145

    Article  Google Scholar 

Download references

Acknowledgements

Our study has been supported by grants from Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX201604). We thank Dr. X. Qing for providing technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyue Huo or Peiqian Yang.

Ethics declarations

Conflict of interest

None of the authors has any commercial or other associations that might pose a conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Z., Huo, C. & Yang, P. Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: role of abnormal apoptosis. Int Urol Nephrol 52, 1049–1055 (2020). https://doi.org/10.1007/s11255-019-02372-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02372-2

Keywords

Navigation