Skip to main content
Log in

Serum uric acid is an independent predictor of renal outcomes in patients with idiopathic membranous nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Accumulating evidence suggests that a relationship exists between serum uric acid (UA) and the progression of chronic kidney disease (CKD), but information regarding idiopathic membranous nephropathy (IMN) is limited.

Methods

Patients with renal biopsy-confirmed diagnosis of IMN between 2009 and 2017 were identified. The demographic and clinical data recorded at the time of renal biopsy were considered the baseline values. The included cases were separated into three groups based on tertiles of the baseline serum UA level, and the relationship between serum UA and poor renal outcome was investigated by receiver operating characteristic (ROC) and time-event analyses. The primary endpoint was poor renal outcome, which was defined as a decrease in the estimated glomerular filtration rate to 50% of the baseline level or progression to end-stage renal disease during the follow-up.

Results

Of 989 cases, 572 eligible patients were included. During a median of 18 months of follow-up, 45 (7.9%) patients progressed to the primary endpoint. Both baseline serum UA and time-averaged UA levels could be used for discrimination of renal outcomes, but the difference was not significant (p value = 0.6). Our Cox regression analysis further demonstrated that baseline serum UA was an independent predictor of poor renal outcome in IMN patients, and subgroup analysis revealed a gender difference in the predictive effect of serum UA.

Conclusions

Our study demonstrated that baseline serum UA was an independent predictor of poor renal outcome in patients with IMN, and a gender difference in the predictive effect was observed in our cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

UA:

Uric acid

CI:

Confidence interval

HR:

Hazard ratio

MN:

Membranous nephropathy

ESRD:

End-stage renal disease

CKD:

Chronic kidney disease

BP:

Blood pressure

eGFR:

Estimated glomerular filtration rate

SD:

Standard deviation

Scr:

Serum creatinine

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

References

  1. Makker SP, Tramontano A (2011) Idiopathic membranous nephropathy: an autoimmune disease. Semin Nephrol 31(4):333–340. https://doi.org/10.1016/j.semnephrol.2011.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Beck LH Jr, Bonegio RG, Lambeau G, Beck DM, Powell DW, Cummins TD, Klein JB, Salant DJ (2009) M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 361(1):11–21. https://doi.org/10.1056/NEJMoa0810457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tomas NM, Beck LH Jr, Meyer-Schwesinger C, Seitz-Polski B, Ma H, Zahner G, Dolla G, Hoxha E, Helmchen U, Dabert-Gay AS, Debayle D, Merchant M, Klein J, Salant DJ, Stahl RA, Lambeau G (2014) Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 371(24):2277–2287. https://doi.org/10.1056/NEJMoa1409354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolf G (2006) Renal injury due to renin–angiotensin–aldosterone system activation of the transforming growth factor-β pathway. Kidney Int 70(11):1914–1919

    Article  CAS  PubMed  Google Scholar 

  5. Shiiki H, Saito T, Nishitani Y, Mitarai T, Yorioka N, Yoshimura A, Yokoyama H, Nishi S, Tomino Y, Kurokawa K (2004) Prognosis and risk factors for idiopathic membranous nephropathy with nephrotic syndrome in Japan. Kidney Int 65(4):1400–1407

    Article  PubMed  Google Scholar 

  6. Cattran D (2005) Management of membranous nephropathy: when and what for treatment. J Am Soc Nephrol 16(5):1188–1194

    Article  PubMed  Google Scholar 

  7. Schieppati A, Mosconi L, Perna A, Mecca G, Bertani T, Garattini S, Remuzzi G (1993) Prognosis of untreated patients with idiopathic membranous nephropathy. N Engl J Med 329(2):85–89

    Article  CAS  PubMed  Google Scholar 

  8. Sprangers B, Bomback AS, Cohen SD, Radhakrishnan J, Valeri A, Markowitz GS, D’Agati V, Appel GB (2012) Idiopathic membranous nephropathy: clinical and histologic prognostic features and treatment patterns over time at a tertiary referral center. Am J Nephrol 36(1):78–89

    Article  CAS  PubMed  Google Scholar 

  9. Reichert LJ, Koene RA, Wetzels JF (1998) Prognostic factors in idiopathic membranous nephropathy. Am J Kidney Dis 31(1):1–11

    Article  CAS  PubMed  Google Scholar 

  10. Segal PE, Choi MJ (2012) Recent advances and prognosis in idiopathic membranous nephropathy. Adv Chronic Kidney Dis 19(2):114–119. https://doi.org/10.1053/j.ackd.2012.01.007

    Article  PubMed  Google Scholar 

  11. Kanellis J, Kang D-H (2005) Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. In: Seminars in nephrology, vol 1, 2005. Elsevier, New York, pp 39–42

    Article  CAS  PubMed  Google Scholar 

  12. Meotti FC, Jameson GN, Turner R, Harwood DT, Stockwell S, Rees MD, Thomas SR, Kettle AJ (2011) Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation. J Biol Chem. https://doi.org/10.1074/jbc.M110.172460

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pagidipati NJ, Hess CN, Clare RM, Akerblom A, Tricoci P, Wojdyla D, Keenan RT, James S, Held C, Mahaffey KW (2017) An examination of the relationship between serum uric acid level, a clinical history of gout, and cardiovascular outcomes among patients with acute coronary syndrome. Am Heart J 187:53–61

    Article  CAS  PubMed  Google Scholar 

  14. Nodera M, Suzuki H, Matsumoto Y, Kamioka M, Kaneshiro T, Yoshihisa A, Ohira T, Takeishi Y (2018) Association between serum uric acid level and ventricular tachyarrhythmia in heart failure patients with implantable cardioverter-defibrillator. Cardiology 140(1):47–51

    Article  CAS  PubMed  Google Scholar 

  15. Chang H-Y, Lee P-H, Lei C-C, Hsu Y-C, Chang H-H, Tung C-W, Lin C-L, Yang H-F, Lu L-C, Jong M-C (2010) Hyperuricemia as an independent risk factor of chronic kidney disease in middle-aged and elderly population. Am J Med Sci 339(6):509–515

    Article  PubMed  Google Scholar 

  16. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612

    Article  PubMed  PubMed Central  Google Scholar 

  17. Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J, Zeeuw DD, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67(6):2089–2100

    Article  PubMed  Google Scholar 

  18. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinform 12(1):77. https://doi.org/10.1186/1471-2105-12-77

    Article  Google Scholar 

  19. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  20. Team RC (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  21. Yoshida K (2019) tableone: create ‘Table 1’ to describe baseline characteristics. R package version 0.10.0. https://CRAN.R-project.org/package=tableone

  22. Uchida S, Kumagai T, Chang WX, Tamura Y, Shibata S (2018) Time to target uric acid to retard chronic kidney disease progression. In: Treviño-Becerra A, Iseki K (eds) Uric acid in chronic kidney disease, vol 192. Karger Publishers, Basel, pp 56–68

    Chapter  Google Scholar 

  23. Eleftheriadis T, Golphinopoulos S, Pissas G, Stefanidis I (2017) Asymptomatic hyperuricemia and chronic kidney disease: narrative review of a treatment controversial. J Adv Res 8(5):555–560. https://doi.org/10.1016/j.jare.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramirez-Sandoval JC, Sanchez-Lozada LG, Madero M (2017) Uric acid, vascular stiffness, and chronic kidney disease: is there a link? Blood Purif 43(1–3):189–195. https://doi.org/10.1159/000452726

    Article  CAS  PubMed  Google Scholar 

  25. Johnson RJ, Nakagawa T, Jalal D, Sánchez-Lozada LG, Kang D-H, Ritz E (2013) Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant 28(9):2221–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mwasongwe SE, Fülöp T, Katz R, Musani SK, Sims M, Correa A, Flessner MF, Young BA (2018) Relation of uric acid level to rapid kidney function decline and development of kidney disease: the Jackson Heart Study. J Clin Hypertens 20(4):775–783

    Article  CAS  Google Scholar 

  27. Lee JW, Lee KH (2019) Comparison of renoprotective effects of febuxostat and allopurinol in hyperuricemic patients with chronic kidney disease. Int Urol Nephrol. https://doi.org/10.1007/s11255-018-2051-2

    Article  PubMed  Google Scholar 

  28. Sampson AL, Singer RF, Walters GD (2017) Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev 10:CD009460. https://doi.org/10.1002/14651858.cd009460.pub2

    Article  PubMed  Google Scholar 

  29. Sanchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, Franco M, Rodriguez-Iturbe B, Johnson RJ (2008) Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol 295(4):F1134–F1141. https://doi.org/10.1152/ajprenal.00104.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanchez-Lozada LG, Tapia E, Santamaria J, Avila-Casado C, Soto V, Nepomuceno T, Rodriguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67(1):237–247. https://doi.org/10.1111/j.1523-1755.2005.00074.x

    Article  PubMed  Google Scholar 

  31. Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23(1):2–7. https://doi.org/10.1159/000066303

    Article  PubMed  Google Scholar 

  32. Zhang J, Chen C, Zhou Q, Zheng S, Lv Y, Zhang J, You X, Li Z, Zhou Z, Pan M (2017) Elevated serum fibrinogen level is an independent risk factor for IgA nephropathy. Oncotarget 8(58):99125–99135. https://doi.org/10.18632/oncotarget.21702

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kawabe M, Sato A, Hoshi T, Sakai S, Hiraya D, Watabe H, Kakefuda Y, Ishibashi M, Abe D, Takeyasu N (2016) Gender differences in the association between serum uric acid and prognosis in patients with acute coronary syndrome. J Cardiol 67(2):170–176

    Article  PubMed  Google Scholar 

  34. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13

    Article  CAS  PubMed  Google Scholar 

  35. Ben Salem C, Slim R, Fathallah N, Hmouda H (2016) Drug-induced hyperuricaemia and gout. Rheumatology 56(5):679–688

    Google Scholar 

  36. Uchida S, Chang WX, Ota T, Tamura Y, Shiraishi T, Kumagai T, Shibata S, Fujigaki Y, Hosoyamada M, Kaneko K (2015) Targeting uric acid and the inhibition of progression to end-stage renal disease—a propensity score analysis. PLoS One 10(12):e0145506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their colleagues at the Department of Nephrology, the First and Second Affiliated Hospitals of Wenzhou Medical University for their support and assistance during the study period.

Funding

This study was supported by the Wenzhou Municipal Science and Technology Bureau under Grant Y20170300 to Min Pan and the Natural Science Foundation of Zhejiang Province under Grant LY14H050006 to Fan Lin.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significant intellectual content to this manuscript as follows: principal investigators, conceived and designed the study: ZJ, PM, and LGY; assessed the study, extracted data, and performed statistical analyses: ZJ, ZJN, YXH, and LD; drafted the manuscript: ZJ; performed a critical review of the manuscript: LF and LGY. All authors have read the manuscript and approved the final version.

Corresponding author

Correspondence to GuoYuan Lu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare.

Ethical approval

The procedure was approved by the Ethics Committee of the First Affiliated Hospital of Wenzhou Medical University.

Informed consent

This study was performed after obtaining written informed consent from all patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Pan, M., Zhang, J. et al. Serum uric acid is an independent predictor of renal outcomes in patients with idiopathic membranous nephropathy. Int Urol Nephrol 51, 1797–1804 (2019). https://doi.org/10.1007/s11255-019-02254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-019-02254-7

Keywords

Navigation