Skip to main content

Advertisement

Log in

Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

To investigate time course of bladder dysfunction and concurrent changes in number and affinity of the muscarinic and P2X receptor in the early stage of streptozotocin (STZ)-induced diabetic rats.

Materials and methods

Diabetic rats were prepared by the intraperitoneal injection of 50 mg/kg of STZ to 7-week-old female Wistar rats. We performed recording of 24-h voiding behavior and cystometry at 1, 4, 8, and 12 weeks after the induction of diabetes. A muscle strip experiments with electrical field stimulation (EFS), carbachol, and α,β-methylene adenosine 5′-triphosphate (α,β-MeATP) were also performed at the same time-points. Additionally, concurrent changes in number and affinity of bladder muscarinic and P2X receptor were measured by a radioreceptor assay using [N-methyl-3H] scopolamine methyl chloride ([3H]NMS) and α,β-methylene-ATP (2,8-3H) tetrasodium salt ([3H]α,β-MeATP).

Results

In STZ-induced diabetic rats, polydipsic polyuric pollakiuria were noted on recording of 24-h voiding behavior from early stage. Also, the residual urine volume markedly increased in diabetic rats on cystometry. In the muscle strip experiment, the detrusor contractions induced by EFS, carbachol, and α,β-MeATP were enhanced in STZ-induced diabetic rats. Based on the radioreceptor assay, the maximum number of sites (Bmax) for the specific binding of [3H]NMS and [3H]α,β-MeATP was concurrently increased in the bladder from diabetic rats.

Conclusion

Increased bladder contractility is found in early stage of diabetic rats. Then, bladder dysfunction is associated with increased number of muscarinic and P2X receptors in STZ-induced diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

STZ:

Streptozotocin

EFS:

Electrical field stimulation

α,β-MeATP:

α,β-methylene adenosine 5′-triphosphate

[3H]NMS:

[N-methyl-3H] scopolamine methyl chloride

[3H]α,β-MeATP:

α,β-methylene-ATP (2,8-3H) tetrasodium salt

Kd:

Dissociation constant

Bmax:

Maximum number of sites

NANC:

Non-adrenergic non-cholinergic

References

  1. Frimodt-Moller C (1978) Diabetic cystopathy. A review of the urodynamic and clinical features of neurogenic bladder dysfunction in diabetes mellitus. Dan Med Bull 25(2):49–60

    CAS  PubMed  Google Scholar 

  2. Ellenberg M (1980) Development of urinary bladder dysfunction in diabetes mellitus. Ann Intern Med 92(2 Pt 2):321–323

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan SA, Te AE, Blaivas JG (1995) Urodynamic findings in patients with diabetic cystopathy. J Urol 153(2):342–344

    Article  CAS  PubMed  Google Scholar 

  4. Kebapci N, Yenilmez A, Efe B, Entok E, Demirustu C (2007) Bladder dysfunction in type 2 diabetic patients. Neurourol Urodyn 26(6):814–819. https://doi.org/10.1002/nau.20422

    Article  PubMed  Google Scholar 

  5. Christ GJ, Hsieh Y, Zhao WX, Schenk G, Venkateswarlu K, Wang HZ, Tar MT, Melman A (2006) Effects of streptozotocin-induced diabetes on bladder and erectile (dys)function in the same rat in vivo. BJU Int 97(5):1076–1082. https://doi.org/10.1111/j.1464-410X.2006.06058.x

    Article  PubMed  Google Scholar 

  6. Tong YC, Cheng JT, Hsu CT (2006) Alterations of M(2)-muscarinic receptor protein and mRNA expression in the urothelium and muscle layer of the streptozotocin-induced diabetic rat urinary bladder. Neurosci Lett 406(3):216–221. https://doi.org/10.1016/j.neulet.2006.07.065

    Article  CAS  PubMed  Google Scholar 

  7. Cheng JT, Yu BC, Tong YC (2007) Changes of M3-muscarinic receptor protein and mRNA expressions in the bladder urothelium and muscle layer of streptozotocin-induced diabetic rats. Neurosci Lett 423(1):1–5. https://doi.org/10.1016/j.neulet.2007.05.062

    Article  CAS  PubMed  Google Scholar 

  8. Saito M, Kinoshita Y, Satoh I, Shinbori C, Suzuki H, Yamada M, Watanabe T, Satoh K (2007) Ability of cyclohexenonic long-chain fatty alcohol to reverse diabetes-induced cystopathy in the rat. Eur Urol 51(2):479–487. https://doi.org/10.1016/j.eururo.2006.06.024 (discussion 487–478)

    Article  CAS  PubMed  Google Scholar 

  9. Malmgren A, Andersson PO, Uvelius B (1989) Bladder function in rats with short- and long-term diabetes; effects of age and muscarinic blockade. J Urol 142(6):1608–1614

    Article  CAS  PubMed  Google Scholar 

  10. Daneshgari F, Liu G, Imrey PB (2006) Time dependent changes in diabetic cystopathy in rats include compensated and decompensated bladder function. J Urol 176(1):380–386. https://doi.org/10.1016/S0022-5347(06)00582-9

    Article  PubMed  Google Scholar 

  11. Munoz A, Boone TB, Smith CP, Somogyi GT (2013) Diabetic plasticity of non-adrenergic non-cholinergic and P2X-mediated rat bladder contractions. Brain Res Bull 95:40–45. https://doi.org/10.1016/j.brainresbull.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tong YC, Hung YC, Shinozuka K, Kunitomo M, Cheng JT (1997) Evidence of adenosine 5′-triphosphate release from nerve and P2X-purinoceptor mediated contraction during electrical stimulation of rat urinary bladder smooth muscle. J Urol 158(5):1973–1977. https://doi.org/10.1016/S0022-5347(01)64196-X

    Article  CAS  PubMed  Google Scholar 

  13. Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84(3):935–986. https://doi.org/10.1152/physrev.00038.2003

    Article  CAS  PubMed  Google Scholar 

  14. Lai HH, Smith CP, Munoz A, Boone TB, Szigeti GP, Somogyi GT (2008) Activation of cholinergic receptors blocks non-adrenergic non-cholinergic contractions in the rat urinary bladder. Brain Res Bull 77(6):420–426. https://doi.org/10.1016/j.brainresbull.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  15. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, Malmberg AB, Cain G, Berson A, Kassotakis L, Hedley L, Lachnit WG, Burnstock G, McMahon SB, Ford AP (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407(6807):1011–1015. https://doi.org/10.1038/35039519

    Article  CAS  PubMed  Google Scholar 

  16. Lee WC, Chiang PH, Tain YL, Wu CC, Chuang YC (2012) Sensory dysfunction of bladder mucosa and bladder oversensitivity in a rat model of metabolic syndrome. PLoS ONE 7(9):e45578. https://doi.org/10.1371/journal.pone.0045578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Igawa Y, Persson K, Andersson KE, Uvelius B, Mattiasson A (1993) Facilitatory effect of vasoactive intestinal polypeptide on spinal and peripheral micturition reflex pathways in conscious rats with and without detrusor instability. J Urol 149(4):884–889

    Article  CAS  PubMed  Google Scholar 

  18. Nasrin S, Masuda E, Kugaya H, Ito Y, Yamada S (2013) Improvement by phytotherapeutic agent of detrusor overactivity, down-regulation of pharmacological receptors and urinary cytokines in rats with cyclophosphamide induced cystitis. J Urol 189(3):1123–1129. https://doi.org/10.1016/j.juro.2012.09.054

    Article  CAS  PubMed  Google Scholar 

  19. Liu G, Daneshgari F (2006) Temporal diabetes- and diuresis-induced remodeling of the urinary bladder in the rat. Am J Physiol Regul Integr Comp Physiol 291(3):R837–R843. https://doi.org/10.1152/ajpregu.00917.2005

    Article  CAS  PubMed  Google Scholar 

  20. Longhurst PA, Leggett RE, Briscoe JA (1995) Characterization of the functional muscarinic receptors in the rat urinary bladder. Br J Pharmacol 116(4):2279–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vial C, Evans RJ (2000) P2X receptor expression in mouse urinary bladder and the requirement of P2X(1) receptors for functional P2X receptor responses in the mouse urinary bladder smooth muscle. Br J Pharmacol 131(7):1489–1495. https://doi.org/10.1038/sj.bjp.0703720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Reilly BA, Kosaka AH, Chang TK, Ford AP, Popert R, Rymer JM, McMahon SB (2001) A quantitative analysis of purinoceptor expression in human fetal and adult bladders. J Urol 165(5):1730–1734. https://doi.org/10.1016/S0022-5347(05)66403-8

    Article  PubMed  Google Scholar 

  23. Yoshida M, Homma Y, Inadome A, Yono M, Seshita H, Miyamoto Y, Murakami S, Kawabe K, Ueda S (2001) Age-related changes in cholinergic and purinergic neurotransmission in human isolated bladder smooth muscles. Exp Gerontol 36(1):99–109. https://doi.org/10.1016/S0531-5565(00)00175-3

    Article  CAS  PubMed  Google Scholar 

  24. Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289(3):F489–F495. https://doi.org/10.1152/ajprenal.00467.2004

    Article  CAS  PubMed  Google Scholar 

  25. Ford AP, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP, Cockayne DA (2006) Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol 147(Suppl 2):S132–S143. https://doi.org/10.1038/sj.bjp.0706637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Elbadawi A (1996) Functional anatomy of the organs of micturition. Urol Clin North Am 23(2):177–210

    Article  CAS  PubMed  Google Scholar 

  27. Chancellor MB (2014) The overactive bladder progression to underactive bladder hypothesis. Int Urol Nephrol 46(Suppl 1):S23–S27. https://doi.org/10.1007/s11255-014-0778-y

    Article  PubMed  Google Scholar 

  28. Torimoto K, Fraser MO, Hirao Y, De Groat WC, Chancellor MB, Yoshimura N (2004) Urethral dysfunction in diabetic rats. J Urol 171(5):1959–1964. https://doi.org/10.1097/01.ju.0000121283.92963.05

    Article  PubMed  Google Scholar 

  29. Torimoto K, Hirao Y, Matsuyoshi H, de Groat WC, Chancellor MB, Yoshimura N (2005) alpha1-Adrenergic mechanism in diabetic urethral dysfunction in rats. J Urol 173(3):1027–1032. https://doi.org/10.1097/01.ju.0000146268.45662.36

    Article  CAS  PubMed  Google Scholar 

  30. Yang Z, Dolber PC, Fraser MO (2007) Diabetic urethropathy compounds the effects of diabetic cystopathy. J Urol 178(5):2213–2219. https://doi.org/10.1016/j.juro.2007.06.042

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments were approved by the Animal Research and Care Committee at the Nihon University School of Medicine (Approved No. 080139). This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshizawa, T., Hayashi, Y., Yoshida, A. et al. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats. Int Urol Nephrol 50, 451–458 (2018). https://doi.org/10.1007/s11255-018-1800-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-018-1800-6

Keywords

Navigation