Skip to main content

Advertisement

Log in

Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis

  • Urology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the effect of implanted S-nitrosoglutathione (GSNO) coating polypropylene mesh in foreign-body response of rats.

Methods

Thirty female rats underwent to subcutaneous implant of five polypropylene (PP) fragments: uncoated PP (control); PP polyvinylalcohol (PVA) coated and PP PVA + GSNO (1, 10 and 70 mMol) coated. After euthanasia (4 and 30 days), eight slides were prepared from each animal: hematoxylin–eosin (inflammatory response); unstained (birefringence collagen evaluation); TUNEL technique (apoptosis); and five for immunohistochemical processing: CD-31 (angiogenesis), IL-1 and TNF-α (proinflammatory cytokynes), iNOS (NO synthesis) and MMP-2 (collagen metabolism). The inflammation area, birefringence index, apoptotic index, immunoreactivity and vessel density were objectively measured.

Results

Inflammatory reaction area at 4 days was 11.3, 15.2, 25.1, 17.1 and 19.3% of pure PP, PVA, GSNO 1, 10 and 70 mM, respectively, p = 0.0006 (PP × Others). At 30 days lower inflammatory area was observed in GSNO 10 and 70 mM compared to pure PP (5.3, 5.2 and 11.1%, respectively, p = 0.0001). Vessel density was higher for GSNO 1 mM (25.5%) compared to pure PP (19.6%) at 30 days only, p = 0.0081. Apoptotic index at 4 days was lower for GSNO 1 mM (49.3%) than pure PVA (60.6%), p = 0.0124. GSNO 10 and 70 mM reduced their apoptotic index at 30 days compared to 4 days (49.9 vs. 36.9 and 59.1 vs. 47.5%, respectively, p = 0.0397). Birefringence index, IL-1, TNF, MMP-2 and iNOS were not different.

Conclusions

Depending on concentrations, GSNO can increase angiogenesis, reduce inflammation and apoptosis compared to pure PP, without impact on cytokine, collagen organization/metabolism and endogenous NO synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu JM, Matthews CA, Conover MM et al (2014) Lifetime risk of stress urinary incontinence or pelvic organ prolapse surgery. Obstet Gynecol 123:1201–1206. doi:10.1097/AOG.0000000000000286

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deval B, Haab F (2003) Whatʼs new in prolapse surgery? Curr Opin Urol 13:315–323. doi:10.1097/00042307-200307000-00008

    Article  PubMed  Google Scholar 

  3. Zeplin PHP, Larena-Avellaneda AA, Jordan MM et al (2010) Phosphorylcholine-coated silicone implants: effect on inflammatory response and fibrous capsule formation. Ann Plast Surg 65:560–564. doi:10.1097/SAP.0b013e3181d6e326

    Article  CAS  PubMed  Google Scholar 

  4. Baessler K, Maher CF (2006) Mesh augmentation during pelvic-floor reconstructive surgery: risks and benefits. Curr Opin Obstet Gynecol 18:560–566. doi:10.1097/01.gco.0000242961.48114.b0

    Article  PubMed  Google Scholar 

  5. Prudente A, Riccetto CLZ, de Simões MMSG et al (2013) Impregnation of implantable polypropylene mesh with S-nitrosoglutathione-loaded poly(vinyl alcohol). Colloids Surf B Biointerfaces 108:178–184. doi:10.1016/j.colsurfb.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  6. Andreollo NA, Santos EFD, Araújo MR, Lopes LR (2012) Idade dos ratos versus idade humana: qual é a relação? Arq Bras Cir Dig (São Paulo) 25:49–51. doi:10.1590/S0102-67202012000100011

    Article  Google Scholar 

  7. Dias FGF, Prudente A, Siniscalchi RT et al (2015) Can highly purified collagen coating modulate polypropylene mesh immune-inflammatory and fibroblastic reactions? Immunohistochemical analysis in a rat model. Int Urogynecol J 26:569–576. doi:10.1007/s00192-014-2529-0

    Article  PubMed  Google Scholar 

  8. Moretti AIS, Pinto FJPS, Cury V et al (2012) Nitric oxide modulates metalloproteinase-2, collagen deposition and adhesion rate after polypropylene mesh implantation in the intra-abdominal wall. Acta Biomater 8:108–115. doi:10.1016/j.actbio.2011.08.004

    Article  CAS  PubMed  Google Scholar 

  9. Junge K, Binnebösel M, Rosch R et al (2009) Impact of proinflammatory cytokine knockout on mesh integration. J Invest Surg 22:256–262. doi:10.1080/08941930802713092

    Article  PubMed  Google Scholar 

  10. Faulk DM, Londono R, Wolf MT et al (2014) ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh. Biomater 35:8585–8595. doi:10.1016/j.biomaterials.2014.06.057

    Article  CAS  Google Scholar 

  11. Gerullis H, Eimer C, Ramon A et al (2011) 787 Improved biocompatibility of meshes used for hernia, incontinence and organ prolapse repair by plasma coating—results of in vitro and in vivo studies. J Urol 185:e317–e317. doi:10.1016/j.juro.2011.02.605

    Article  Google Scholar 

  12. Siniscalchi RT, Melo M, Palma PCR et al (2013) Highly purified collagen coating enhances tissue adherence and integration properties of monofilament polypropylene meshes. Int Urogynecol J 24:1747–1754. doi:10.1007/s00192-013-2109-8

    Article  PubMed  Google Scholar 

  13. Huffaker RK, Muir TW, Rao A et al (2008) Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. Am J Obstet Gynecol 198:582.e1–582.e7. doi:10.1016/j.ajog.2007.12.029

    Article  Google Scholar 

  14. Pierce LM, Asarias JR, Nguyen PT et al (2011) Inflammatory cytokine and matrix metalloproteinase expression induced by collagen-coated and uncoated polypropylene meshes in a rat model. YMOB. doi:10.1016/j.ajog.2011.02.045

    Google Scholar 

  15. Arbos MA, Ferrando JM, Quiles MT et al (2006) Improved surgical mesh integration into the rat abdominal wall with arginine administration. Biomater 27:758–768. doi:10.1016/j.biomaterials.2005.06.027

    Article  CAS  Google Scholar 

  16. Pierce LM, Rao A, Baumann SS et al (2009) Long-term histologic response to synthetic and biologic graft materials implanted in the vagina and abdomen of a rabbit model. YMOB 200:546–548. doi:10.1016/j.ajog.2008.12.040

    Google Scholar 

  17. Voskerician G, Jin J, White MF et al (2010) Effect of biomaterial design criteria on the performance of surgical meshes for abdominal hernia repair: a pre-clinical evaluation in a chronic rat model. J Mater Sci Mater Med 21:1989–1995. doi:10.1007/s10856-010-4037-1

    Article  CAS  PubMed  Google Scholar 

  18. Pierce LM, Grunlan MA, Hou Y et al (2009) Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. YMOB 200:549.e1–549.e8. doi:10.1016/j.ajog.2008.12.041

    Google Scholar 

  19. Pereira-lucena CG, Neto RA, de Rezende DT et al (2014) Early and late postoperative inflammatory and collagen deposition responses in three different meshes: an experimental study in rats. Hernia 18:563–570. doi:10.1007/s10029-013-1206-4

    CAS  PubMed  Google Scholar 

  20. Zogbi L, Trindade EN, Trindade MRM (2013) Comparative study of shrinkage, inflammatory response and fibroplasia in heavyweight and lightweight meshes. Hernia 17:765–772. doi:10.1007/s10029-013-1046-2

    Article  CAS  PubMed  Google Scholar 

  21. Cervigni M, Natale F, La Penna C et al (2011) Collagen-coated polypropylene mesh in vaginal prolapse surgery: an observational study. Eur J Obstet Gynecol 156:223–227. doi:10.1016/j.ejogrb.2011.01.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Sao Paulo Research Foundation (Grant: 2011/11522-2).

Author contribution

AP contributed to conception and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript, statistical analysis, obtaining funding and technical support. WJF contributed to conception and design, acquisition of data, analysis and interpretation of data, critical revision of the manuscript and technical and material support. LOR contributed to conception and design, analysis and interpretation of data, drafting of the manuscript and critical revision of the manuscript. CLZR contributed to conception and design, acquisition of data, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript, statistical analysis, obtaining funding, technical support and supervision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Prudente.

Ethics declarations

Conflict of interest

None.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This study has received approval by the Ethics Committee for Animal Experiments (CEEA-IB-UNICAMP) of the University of Campinas (Protocol: 2400-1).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudente, A., Favaro, W.J., Reis, L.O. et al. Nitric oxide coating polypropylene mesh increases angiogenesis and reduces inflammatory response and apoptosis. Int Urol Nephrol 49, 597–605 (2017). https://doi.org/10.1007/s11255-017-1520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-017-1520-3

Keywords

Navigation