Skip to main content

Advertisement

Log in

Hyperhomocysteinaemia as a potential marker of early renal function decline in middle-aged Asian people without chronic kidney disease

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

High levels of serum total homocysteine (tHcy), often observed in chronic kidney disease (CKD) patients, are a risk factor for cardiovascular disease. However, little is known about the relationship between tHcy and renal function in healthy individuals. We examined whether tHcy levels are related to renal function in Asian individuals without CKD.

Methods

This cross-sectional study examined 2032 subjects, aged 40–64 years. Individuals with kidney diseases or other conditions that could affect tHcy were excluded. Renal function was determined by estimated glomerular filtration rate (eGFR) from levels of serum creatinine (sCr) and cystatin C.

Results

Age, tHcy, sCr, and cystatin C of the subjects were 54.1 ± 6.0 years, 9.5 (8.0–11.4) μmol/L, 0.81 ± 0.1 mg/dL, and 0.82 ± 0.1 mg/L, respectively. In a multiple linear regression analysis, tHcy was a significant independent determinant of sCr and cystatin C in men (β = 0.206 and β = 0.282, respectively) and women (β = 0.247 and β = 0.229, respectively). Highest tHcy levels were independently associated with increased cystatin C (>s1.10 mg/L) with an odds ratio (OR) of 5.00 [95 % confidence interval (CI) 2.81–8.09] and decreased eGFR (<90 mL/min/1.73 m2) with an OR of 1.69 (95 % CI 1.36–2.11) compared to tHcy levels in the 1st–3rd quartiles.

Conclusions

Higher levels of tHcy are independently associated with sCr and cystatin C elevation. Our study suggests that tHcy levels may be influenced by renal function in Asian populations without CKD. Future studies are needed to define the role of tHcy in renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Obrador GT, Pereira BJ, Kausz AT (2002) Chronic kidney disease in the United States: an underrecognized problem. Semin Nephrol 22:441–448

    PubMed  Google Scholar 

  2. Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, Hallan HA, Lydersen S, Holmen J (2006) International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 17(8):2275–2284

    Article  PubMed  Google Scholar 

  3. Ponte B, Pruijm M, Marques-Vidal P, Martin PY, Burnier M, Paccaud F, Waeber G, Vollenweider P, Bochud M (2013) Determinants and burden of chronic kidney disease in the population-based CoLaus study: a cross-sectional analysis. Nephrol Dial Transplant 28:2329–2339

    Article  PubMed  Google Scholar 

  4. Bommer Jurgen (2002) Prevalence and socio-economic aspects of chronic kidney disease. Nephrol Dial Transplant 17:8–12

    Article  PubMed  Google Scholar 

  5. Brattstrom L, Lindgren A, Israelsson B, Anderson A, Hultberg B (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged to elderly subjects. J Intern Med 236:633–641

    Article  PubMed  CAS  Google Scholar 

  6. Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12:2181–2189

    PubMed  CAS  Google Scholar 

  7. Ferechide D, Radulescu D (2009) Hyperhomocysteinemia in renal diseases. J Med Life 2:53–59

    PubMed  Google Scholar 

  8. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. probable benefits of benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  PubMed  CAS  Google Scholar 

  9. Robinson Killian (2004) Renal disease, homocysteine, and cardiovascular complications. Circulation 109:294–295

    Article  PubMed  Google Scholar 

  10. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Tanaka K, Okubo K, Nakamura H, Hata J, Oishi Y, Kato I, Hirakata H, Iida M (2004) Hyperhomocysteinemia and the development of chronic kidney disease in a general population: the Hisayama study. Am J Kidney Dis 44:437–445

    Article  PubMed  Google Scholar 

  11. Levi A, Cohen E, Levi M, Goldberg E, Garty M, Krause I (2014) Elevated serum homocysteine is a predictor of accelerated decline in renal function and chronic kidney disease: a historical prospective study. Eur J Intern Med 25:951–955

    Article  PubMed  CAS  Google Scholar 

  12. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  PubMed  CAS  Google Scholar 

  13. Kielstein JT, Salpeter SR, Buckley NS, Cooke JP, Fliser D (2008) Two cardiovascular risk factors in one? Homocysteine and its relation to glomerular filtration rate. A meta-analysis of 41 studies with 27,000 participants. Kidney Blood Press Res 31:259–267

    Article  PubMed  CAS  Google Scholar 

  14. Sakuta H, Suzuki T (2005) Alcohol consumption and plasma homocysteine. Alcohol 37:73–77

    Article  PubMed  CAS  Google Scholar 

  15. Haapanen N, Miilunpalo S, Pasanen M, Oja P, Vuori I (1997) Association between leisure time physical activity and 10-year body mass change among working-aged men and women. Int J Obes Relat Metab Disord 21:288–296

    Article  PubMed  CAS  Google Scholar 

  16. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288:2015–2022

    Article  Google Scholar 

  17. Wald DS, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 325:1202–1208

    Article  PubMed  PubMed Central  Google Scholar 

  18. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Dietin Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  PubMed  CAS  Google Scholar 

  19. Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehman-Breen C (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352:2049–2060

    Article  PubMed  CAS  Google Scholar 

  20. Menon V, Wang X, Greene T, Beck GJ, Kusek JW, Selhub J, Levey AS, Sarnak MJ (2005) Homocysteine in chronic kidney disease: effect of low protein diet and repletion with B vitamins. Kidney Int 67:1539–1546

    Article  PubMed  CAS  Google Scholar 

  21. Shankar A, Wang JJ, Chua B, Rochtchina E, Flood V, Mitchell P (2008) Positive association between plasma homocysteine level and chronic kidney disease. Kidney Blood Press Res 31:55–62

    Article  PubMed  CAS  Google Scholar 

  22. Bostom AG, Kronenberg F, Jacques PF, Kuen E, Ritz E, Konig P, Kraatz G, Lhotta K, Mann JF, Muller GA, Neyer U, Riegel W, Schwenger V, Riegler P, Selhub J (2001) Proteinuria and plasma total homocysteine levels in chronic renal disease patients with a normal range serum creatinine: critical impact of true glomerular filtration rate. Atherosclerosis 159:219–223

    Article  PubMed  CAS  Google Scholar 

  23. Sarnak MJ, Levey AS (2000) Cardiovascular disease and chronic renal disease: a new paradigm. Am J Kidney Dis 35:117–131

    Article  Google Scholar 

  24. Bhalodia YS, Sheth NR, Vaghasiya JD, Jivani NP (2011) Homocysteine-dependent endothelial dysfunction induced by renal ischemia/reperfusion injury. J Nephrol 24:631–635

    Article  PubMed  CAS  Google Scholar 

  25. Francis ME, Eggers PW, Hostetter TH, Briggs JP (2004) Association between serum homocysteine and markers of impaired kidney function in adults in the United States. Kidney Int 66:303–312

    Article  PubMed  CAS  Google Scholar 

  26. Henry RM, Kostense PJ, Bos G, Dekker JM, Nijpels G, Heine RJ et al (2002) Mild renal insufficiency is associated with increased cardiovascular mortality: the Hoorn Study. Kidney Int 62:1402–1407

    Article  PubMed  Google Scholar 

  27. Stam F, van Guldener C, Becker A, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD (2006) Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol 17:537–545

    Article  PubMed  CAS  Google Scholar 

  28. Wollesen F, Brattström L, Refsum H, Ueland PM, Berglund L, Berne C (1999) Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 55:1028–1035

    Article  PubMed  CAS  Google Scholar 

  29. Lewerin C, Ljungman S, Nilsson-Ehle H (2007) Glomerular filtration rate as measured by serum cystatin C is an important determinant of plasma homocysteine and serum methylmalonic acid in the elderly. J Intern Med 261:65–73

    Article  PubMed  CAS  Google Scholar 

  30. Hucks D, Thuraisingham RC, Raftery MJ, Yaqoob MM (2004) Homocysteine induced impairment of nitric oxidedependent vasorelaxation is reversible by the superoxide dismutase mimetic TEMPOL. Nephrol Dial Transplant 19:1999–2005

    Article  PubMed  CAS  Google Scholar 

  31. Ganji V, Kafai MR (2003) Demographic, health, lifestyle, and blood vitamin determinants of serum total homocysteine concentrations in the third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 77:826–833

    PubMed  CAS  Google Scholar 

  32. Jonasson T, Ohlin H, Andersson A, Arnadottir M, Hultberg B (2002) Renal function exerts only a minor influence on high plasma homocysteine concentrations in patients with acute coronary syndromes. Clin Chem Lab Med 40:137–142

    Article  PubMed  CAS  Google Scholar 

  33. Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO (1995) Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 47:312–318

    Article  PubMed  CAS  Google Scholar 

  34. Bostom AG, Gohh RY, Bausserman L, Hakas D, Jacques PF, Selhub J, Dworkin L, Rosenberg IH (1999) Serum cystatin C as a determinant of fasting total homocysteine levels in renal transplant recipients with a normal serum creatinine. J Am Soc Nephrol 10:164–166

    PubMed  CAS  Google Scholar 

  35. Ramel A, Jonsson PV, Bjornsson S, Thorsdottir I (2007) Total plasma homocysteine in hospitalized elderly: associations with vitamin status and renal function. Ann Nutr Metab 51:527–532

    Article  PubMed  CAS  Google Scholar 

  36. Gibson A, Woodside JV, Young IS, Sharpe PC, Mercer C, Patterson CC, Mckinley MC, Kluijtmans LAJ, Whitehead AS, Evans A (2008) Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers—a randomized, crossover intervention study. QJM 101:881–887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wook Jeong.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Review Board of Pusan National University Hospital (IRB No. E-2014153).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tak, Y.J., Jeong, D.W., Kim, Y.J. et al. Hyperhomocysteinaemia as a potential marker of early renal function decline in middle-aged Asian people without chronic kidney disease. Int Urol Nephrol 48, 239–248 (2016). https://doi.org/10.1007/s11255-015-1180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-015-1180-0

Keywords

Navigation