Skip to main content

Advertisement

Log in

A review of rodent models of peritoneal dialysis and its complications

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

This article reviews the available rodent models of peritoneal dialysis (PD) that have been developed over the past 20 years and the complications associated with their use. Although there are several methods used in different studies, the focus of this article is not to review or provide detailed summaries of these methods. Rather, this article reviews the most common methods of establishing a dialysis model in rodents, the assays used to observe function of the peritoneum in dialysis, and how these models are adapted to study peritonitis and peritoneal fibrosis. We compared the advantages and disadvantages of different methods, which should be helpful in studies of PD and may provide valuable data for further clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Musi B, Braide M, Wieslander A, Rippe A, Albrektsson A, Henle T et al (2001) Very high daily intraperitoneal doses of carbonyl compounds affect the morphology, but not the exchange characteristics, of rat peritoneum. Blood Purif 19(3):286–292

    Article  CAS  PubMed  Google Scholar 

  2. Musi B, Braide M, Carlsson O, Wieslander A, Albrektsson A, Ketteler M et al (2004) Biocompatibility of peritoneal dialysis fluids: long-term exposure of nonuremic rats. Perit Dial Int 24(1):37–47

    CAS  PubMed  Google Scholar 

  3. Wieczorowska-Tobis K, Brelinska R, Witowski J, Passlick-Deetjen J, Schaub TP, Schilling H et al (2004) Evidence for less irritation to the peritoneal membrane in rats dialyzed with solutions low in glucose degradation products. Perit Dial Int 24(1):48–57

    CAS  PubMed  Google Scholar 

  4. Mortier S, Faict D, Lameire NH, De Vriese AS (2005) Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 67(4):1559–1565

    Article  CAS  PubMed  Google Scholar 

  5. Sayarlioglu H, Dogan E, Erkoc R, Ozbek H, Bayram I, Sayarlioglu M et al (2006) The effect of colchicine on the peritoneal membrane. Ren Fail 28(1):69–75

    Article  CAS  PubMed  Google Scholar 

  6. Rippe A, Rippe C, Swärd K, Rippe B (2007) Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis. Nephrol Dial Transplant 22(1):88–95

    Article  CAS  PubMed  Google Scholar 

  7. Sun Y, Zhu F, Yu X, Nie J, Huang F, Li X et al (2009) Treatment of established peritoneal fibrosis by gene transfer of Smad7 in a rat model of peritoneal dialysis. Am J Nephrol 30(1):84–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Nishimura H, Ikehara O, Naito T, Higuchi C, Sanaka T (2009) Evaluation of taurine as an osmotic agent for peritoneal dialysis solution. Perit Dial Int 29(2):204–216

    CAS  PubMed  Google Scholar 

  9. Wang J, Jiang ZP, Su N, Fan JJ, Ruan YP, Peng WX et al (2013) The role of peritoneal alternatively activated macrophages in the process of peritoneal fibrosis related to peritoneal dialysis. Int J Mol Sci 14(5):10369–10382

    Article  PubMed Central  PubMed  Google Scholar 

  10. Peng W, Dou X, Hao W, Zhou Q, Tang R, Nie J et al (2013) Smad7 gene transfer attenuates angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 18(2):138–147

    Article  CAS  Google Scholar 

  11. Xu T, Xie JY, Wang WM, Ren H, Chen N (2012) Impact of rapamycin on peritoneal fibrosis and transport function. Blood Purif 34(1):48–57

    Article  PubMed  Google Scholar 

  12. Hu W, Jiang Z, Zhang Y, Liu Q, Fan J, Luo N et al (2012) Characterization of infiltrating macrophages in high glucose-induced peritoneal fibrosis in rats. Mol Med Rep 6(1):93–99

    CAS  PubMed  Google Scholar 

  13. Kihm LP, Müller-Krebs S, Klein J, Ehrlich G, Mertes L, Gross ML et al (2011) Benfotiamine protects against peritoneal and kidney damage in peritoneal dialysis. J Am Soc Nephrol 22(5):914–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zweers MM, Splint LJ, Krediet RT, Struijk DG (2001) Ultrastructure of basement membranes of peritoneal capillaries in a chronic peritoneal infusion model in the rat. Nephrol Dial Transplant 16(3):651–654

    Article  CAS  PubMed  Google Scholar 

  15. Beelen RH, Hekking LH, Zareie M, van den Born J (2001) Rat models in peritoneal dialysis. Nephrol Dial Transplant 16(3):672–674

    Article  CAS  PubMed  Google Scholar 

  16. Hekking LH, Zareie M, Driesprong BA, Faict D, Welten AG, de Greeuw I et al (2001) Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 12(12):2775–2786

    CAS  PubMed  Google Scholar 

  17. Pawlaczyk K, Garcia-Lopez E, Kuzlan-Pawlaczyk M, Heimbürger O, Bergström J, Breborowicz A et al (2001) The effect of icodextrin-based solutions on peritoneal transport in rats undergoing chronic peritoneal dialysis. Perit Dial Int 21(Suppl 3):S359–S361

    PubMed  Google Scholar 

  18. Köksal IT, Usta MF, Akkoyunlu G, Toptaş B, Gülkesen KH, Erdogru T et al (2003) The potential role of advanced glycation end product and iNOS in chronic renal failure-related testicular dysfunction. An experimental study. Am J Nephrol 23(5):361–368

    Article  PubMed  Google Scholar 

  19. Mortier S, De Vriese AS, Leyssens A, Vanacker NJ, Faict D, Cornelissen M et al (2003) Antibiotic administration in an animal model of chronic peritoneal dialysate exposure. Perit Dial Int 23(4):331–338

    CAS  PubMed  Google Scholar 

  20. Zareie M, Keuning ED, ter Wee PM, Beelen RH, van den Born J (2005) Peritoneal dialysis fluid-induced changes of the peritoneal membrane are reversible after peritoneal rest in rats. Nephrol Dial Transplant 20(1):189–193

    Article  PubMed  Google Scholar 

  21. Zareie M, van Lambalgen AA, ter Wee PM, Hekking LH, Keuning ED, Schadee-Eestermans IL et al (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25(1):58–67

    CAS  PubMed  Google Scholar 

  22. Zareie M, De Vriese AS, Hekking LH, ter Wee PM, Schalkwijk CG, Driesprong BA et al (2005) Immunopathological changes in a uraemic rat model for peritoneal dialysis. Nephrol Dial Transplant 20(7):1350–1361

    Article  CAS  PubMed  Google Scholar 

  23. van Westrhenen R, Aten J, Aberra M, Dragt CA, Deira G, Krediet RT (2005) Effects of inhibition of the polyol pathway during chronic peritoneal exposure to a dialysis solution. Perit Dial Int 25(Suppl 3):S18–S21

    PubMed  Google Scholar 

  24. Kim CD, Kwon HM, Park SH, Oh EJ, Kim MH, Choi SY et al (2007) Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model. Ther Apher Dial 11(1):56–64

    Article  CAS  PubMed  Google Scholar 

  25. van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT (2008) A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution. Perit Dial Int 28(5):487–496

    PubMed  Google Scholar 

  26. Schilte MN, Loureiro J, Keuning ED, ter Wee PM, Celie JW, Beelen RH et al (2009) Long-term intervention with heparins in a rat model of peritoneal dialysis. Perit Dial Int 29(1):26–35

    CAS  PubMed  Google Scholar 

  27. Cavallini N, Wieslander A, Braide M (2009) Substituting citrate for lactate in peritoneal dialysis fluid improves ultrafiltration in rats. Perit Dial Int 29(1):36–43

    CAS  PubMed  Google Scholar 

  28. Peng W, Zhou Q, Ao X, Tang R, Xiao Z (2013) Inhibition of Rho-kinase alleviates peritoneal fibrosis and angiogenesis in a rat model of peritoneal dialysis. Ren Fail 35(7):958–966

    Article  CAS  PubMed  Google Scholar 

  29. Xiao J, Guo J, Liu XX, Zhang XX, Li ZZ, Zhao ZZ et al (2013) Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. Mol Med Rep 8(1):267–271

    CAS  PubMed  Google Scholar 

  30. Pletinck A, Van Landschoot M, Steppan S, Laukens D, Passlick-Deetjen J, Vanholder R et al (2012) Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant 27(2):548–556

    Article  CAS  PubMed  Google Scholar 

  31. Zhao ZZ, Cao Y, Liu ZS, Xiao J, Tang L, Wang P et al (2011) Effects of recombinant human endostatin on peritoneal angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 16(6):599–606

    Article  CAS  Google Scholar 

  32. Ni J, Moulin P, Gianello P, Feron O, Balligand JL, Devuyst O (2003) Mice that lack endothelial nitric oxide synthase are protected against functional and structural modifications induced by acute peritonitis. J Am Soc Nephrol 14(12):3205–3216

    Article  CAS  PubMed  Google Scholar 

  33. Aroeira LS, Lara-Pezzi E, Loureiro J, Aguilera A, Ramírez-Huesca M, González-Mateo G et al (2009) Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. J Am Soc Nephrol 20(3):582–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Loureiro J, Sandoval P, del Peso G, Gónzalez-Mateo G, Fernández-Millara V, Santamaria B et al (2013) Tamoxifen ameliorates peritoneal membrane damage by blocking mesothelial to mesenchymal transition in peritoneal dialysis. PLoS ONE 8(4):e61165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML et al (2011) Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 22(9):1682–1695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zareie M, Keuning ED, ter Wee PM, Schalkwijk CG, Beelen RH, van den Born J (2006) Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH. Nephrol Dial Transplant 21(1):208–216

    Article  CAS  PubMed  Google Scholar 

  37. Bozkurt D, Taskin H, Sezak M, Biçak S, Sen S, Ok E et al (2008) Rosiglitazone, a peroxisome proliferator-activated receptor agonist, improves peritoneal alterations resulting from an encapsulated peritoneal sclerosis model. Adv Perit Dial 24:32–38

    CAS  PubMed  Google Scholar 

  38. Ishii Y, Sawada T, Shimizu A, Tojimbara T, Nakajima I, Fuchinoue S et al (2001) An experimental sclerosing encapsulating peritonitis model in mice. Nephrol Dial Transplant 16(6):1262–1266

    Article  CAS  PubMed  Google Scholar 

  39. Mishima Y, Miyazaki M, Abe K, Ozono Y, Shioshita K, Xia Z et al (2003) Enhanced expression of heat shock protein 47 in rat model of peritoneal fibrosis. Perit Dial Int 23(1):14–22

    CAS  PubMed  Google Scholar 

  40. Io H, Hamada C, Ro Y, Ito Y, Hirahara I, Tomino Y (2004) Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int 65(5):1927–1936

    Article  CAS  PubMed  Google Scholar 

  41. Hirahara I, Ogawa Y, Kusano E, Asano Y (2004) Activation of matrix metalloproteinase-2 causes peritoneal injury during peritoneal dialysis in rats. Nephrol Dial Transplant 19(7):1732–1741

    Article  CAS  PubMed  Google Scholar 

  42. Tanabe K, Maeshima Y, Ichinose K, Kitayama H, Takazawa Y, Hirokoshi K, Kinomura M et al (2007) Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 71(3):227–238

    Article  CAS  PubMed  Google Scholar 

  43. Fukuoka N, Sugiyama H, Inoue T, Kikumoto Y, Takiue K, Morinaga H et al (2008) Increased susceptibility to oxidant-mediated tissue injury and peritoneal fibrosis in acatalasemic mice. Am J Nephrol 28(4):661–668

    Article  CAS  PubMed  Google Scholar 

  44. Mondello S, Mazzon E, Di Paola R, Crisafulli C, Italiano D, Buemi M et al (2009) Erythropoietin suppresses peritoneal fibrosis in rat experimental model. Eur J Pharmacol 604(1–3):138–149

    Article  CAS  PubMed  Google Scholar 

  45. Hirose M, Nishino T, Obata Y, Nakazawa M, Nakazawa Y, Furusu A et al (2013) 22-Oxacalcitriol prevents progression of peritoneal fibrosis in a mouse model. Perit Dial Int 33(2):132–142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ceri M, Unverdi S, Dogan M, Unverdi H, Karaca G, Kocak G et al (2012) Effect of sirolimus on the regression of peritoneal sclerosis in an experimental rat model. Int Urol Nephrol 44(3):977–982

    Article  CAS  PubMed  Google Scholar 

  47. Kokubo S, Sakai N, Furuichi K, Toyama T, Kitajima S, Okumura T et al (2012) Activation of p38 mitogen-activated protein kinase promotes peritoneal fibrosis by regulating fibrocytes. Perit Dial Int 32(1):10–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Gotloib L, Wajsbrot V, Cuperman Y, Shostak A (2004) Acute oxidative stress induces peritoneal hyperpermeability, mesothelial loss, and fibrosis. J Lab Clin Med 143(1):31–40

    Article  CAS  PubMed  Google Scholar 

  49. Yang CY, Chau YP, Lee HT, Kuo HY, Lee OK, Yang AH (2013) Cannabinoid receptors as therapeutic targets for dialysis-induced peritoneal fibrosis. Am J Nephrol 37(1):50–58

    Article  PubMed  Google Scholar 

  50. Hoff CM (2005) Experimental animal models of encapsulating peritoneal sclerosis. Perit Dial Int 25(Suppl 4):S57–S66

    PubMed  Google Scholar 

  51. Nishimura H, Ito Y, Mizuno M, Tanaka A, Morita Y, Maruyama S et al (2008) Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol 294(5):F1084–F1093

    CAS  Google Scholar 

  52. Mizuno M, Ito Y, Mizuno T, Harris CL, Suzuki Y, Okada N et al (2012) Membrane complement regulators protect against fibrin exudation increases in a severe peritoneal inflammation model in rats. Am J Physiol 302(10):F1245–F1251

    CAS  Google Scholar 

  53. Kato H, Mizuno T, Mizuno M, Sawai A, Suzuki Y, Kinashi H et al (2012) Atrial natriuretic peptide ameliorates peritoneal fibrosis in rat peritonitis model. Nephrol Dial Transplant 27(2):526–536

    Article  CAS  PubMed  Google Scholar 

  54. Li S, Zhou Y, Fan J, Cao S, Cao T, Huang F et al (2011) Heat Shock Protein 72 Enhances Autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats. Am J Pathol 179(6):2822–2834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Leu TH, Charoenfuprasert S, Yen CK, Fan CW, Maa MC (2006) Lipopolysaccharide-induced c-Src expression plays a role in nitric oxide and TNFalpha secretion in macrophages. Mol Immunol 43:308–316

    Article  CAS  PubMed  Google Scholar 

  56. Song SH, Kwak IS, Yang BY, Lee DW, Lee SB, Lee MY (2009) Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton) 14:155–163

    Article  CAS  Google Scholar 

  57. Cao S, Li S, Li H, Xiong L, Zhou Y, Fan J et al (2013) The potential role of HMGB1 release in peritoneal dialysis-related peritonitis. PLoS ONE 8(1):e54647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ni J, McLoughlin RM, Brodovitch A, Moulin P, Brouckaert P, Casadei B et al (2010) Nitric oxide synthase isoforms play distinct roles during acute peritonitis. Nephrol Dial Transplant 25(1):86–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Ni J, Cnops Y, McLoughlin RM, Topley N, Devuyst O (2005) Inhibition of nitric oxide synthase reverses permeability changes in a mouse model of acute peritonitis. Perit Dial Int 25(Suppl 3):S11–S14

    CAS  PubMed  Google Scholar 

  60. Cavanagh JP, Granslo HN, Fredheim EA, Christophersen L, Jensen PØ, Thomsen K, Van Gennip M et al (2013) Efficacy of a synthetic antimicrobial peptidomimetic versus vancomycin in a Staphylococcus epidermidis device-related murine peritonitis model. J Antimicrob Chemother 68(9):2106–2110

    Article  CAS  PubMed  Google Scholar 

  61. Aoyama T, Ogata K, Shimizu M, Hatta S, Masuhara K, Shima Y et al (2005) Pharmacokinetics of fluconazole and fosfluconazole after intraperitoneal administration to peritoneal dialysis rats. Drug Metab Pharmacokinet 20(6):485–490

    Article  CAS  PubMed  Google Scholar 

  62. van Westrhenen R, Westra WM, van den Born J, Krediet RT, Keuning ED, Hiralall J et al (2006) Alpha-2-macroglobulin and albumin are useful serum proteins to detect subclinical peritonitis in the rat. Perit Dial Int 26(1):101–107

    PubMed  Google Scholar 

  63. Ersoy R, Celik A, Yilmaz O, Sarioglu S, Sis B, Akan P et al (2007) The effects of irbesartan and spironolactone in prevention of peritoneal fibrosis in rats. Perit Dial Int 27(4):424–431

    CAS  PubMed  Google Scholar 

  64. Park MS, Heimbürger O, Bergström J, Waniewski J, Werynski A, Lindholm B (1994) Evaluation of a rat model of peritoneal dialysis: fluid and solute transport characteristics. Nephrol Dial Transplant 9:404–412

    CAS  PubMed  Google Scholar 

  65. Park MS, Heimbürger O, Waniewski J, Werynski A, Lee HB, Bergström J et al (1995) The effect of dialysate acidity on peritoneal solute transport in the rat. Perit Dial Int 15(8):312–319

    CAS  PubMed  Google Scholar 

  66. Wang T, Heimbürger O, Cheng HH, Bergström J, Lindholm B (1998) Peritoneal fluid and solute transport with different polyglucose formulations. Perit Dial Int 18(2):193–203

    CAS  PubMed  Google Scholar 

  67. Park MS, Lee EY, Lee NS, Waniewski J, Lindholm B, Lee HB (1998) The effects of ouabain and potassium on peritoneal fluid and solute transport characteristics. Perit Dial Int 18(4):402–409

    CAS  PubMed  Google Scholar 

  68. Pawlaczyk K, Kuzlan-Pawlaczyk M, Anderstam B, Heimbürger O, Bergström J, Waniewski J et al (2001) Effects of intraperitoneal heparin on peritoneal transport in a chronic animal model of peritoneal dialysis. Nephrol Dial Transplant 16(3):669–671

    Article  CAS  PubMed  Google Scholar 

  69. Park MS, Lee EY, Suh GI, Waniewski J, Werynski A, Lee HB (1999) Peritoneal transport of glucose in rat. Perit Dial Int 19(5):442–450

    CAS  PubMed  Google Scholar 

  70. Van Biesen W, De Vriese AS, Carlsson O, Van Landschoot M, Dheuvaert T, Lameire NH (2002) Comparison of the radioiodinated serum albumin (RISA) dilution technique with direct volumetric measurements in animal models of peritoneal dialysis. Perit Dial Int 22(3):316–322

    PubMed  Google Scholar 

  71. Lindholm B, Werynski A, Bergström J (1987) Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans Am Soc Artif Intern Organs 33:19–27

    CAS  Google Scholar 

  72. Lee JH, Reddy DK, Saran R, Moore HL, Twardowski ZJ, Nolph KD et al (2000) Advanced glycosylation end-products in diabetic rats on peritoneal dialysis using various solutions. Perit Dial Int 20(6):643–651

    CAS  PubMed  Google Scholar 

  73. Zeltzer E, Klein O, Rashid G, Katz D, Korzets Z, Bernheim J (2000) Intraperitoneal infusion of glucose-based dialysate in the rat–an animal model for the study of peritoneal advanced glycation end-products formation and effect on peritoneal transport. Perit Dial Int 20(6):656–661

    CAS  PubMed  Google Scholar 

  74. Wieczorowska-Tobis K, Polubinska A, Wisniewska J, Pawlaczyk K, Kuzlan-Pawlaczyk M, Filas V et al (2001) Multidirectional approach to study peritoneal dialysis fluid biocompatibility in a chronic peritoneal dialysis model in the rat. Nephrol Dial Transplant 16(3):655–656

    Article  CAS  PubMed  Google Scholar 

  75. Duman S, Günal AI, Sen S, Asçi G, Ozkahya M, Terzioglu E et al (2001) Does enalapril prevent peritoneal fibrosis induced by hypertonic (3.86%) peritoneal dialysis solution? Perit Dial Int 21(2):219–224

    CAS  PubMed  Google Scholar 

  76. Park SH, Lee EG, Kim IS, Kim YJ, Cho DK, Kim YL (2004) Effect of glucose degradation products on the peritoneal membrane in a chronic inflammatory infusion model of peritoneal dialysis in the rat. Perit Dial Int 24(2):115–122

    CAS  PubMed  Google Scholar 

  77. Kakuta T, Tanaka R, Satoh Y, Izuhara Y, Inagi R, Nangaku M et al (2005) Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int 68(3):1326–1336

    Article  CAS  PubMed  Google Scholar 

  78. Shin SK, Kamerath CD, Gilson JF, Leypoldt JK (2006) Effects of anaesthesia on fluid and solute transport in a C57BL6 mouse model of peritoneal dialysis. Nephrol Dial Transplant 21(10):2874–2880

    Article  CAS  PubMed  Google Scholar 

  79. Yuan J, Fang W, Ni Z, Dai H, Lin A, Cao L et al (2009) Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2. Pediatr Nephrol 24(1):163–170

    Article  PubMed  Google Scholar 

  80. Song SH, Kwak IS, Yang BY, Lee DW, Lee SB, Lee MY (2009) Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton) 14(2):155–163

    Article  CAS  Google Scholar 

  81. Mendelson AA, Guan Q, Chafeeva I, da Roza GA, Kizhakkedathu JN, Du C (2013) Hyperbranched polyglycerol is an efficacious and biocompatible novel osmotic agent in a rodent model of peritoneal dialysis. Perit Dial Int 33(1):15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Bui DS, Seguro AC, Shimitzu MH, Schliemann I, Martini D, Romão JE Jr et al (2012) N-Acetylcysteine protects the peritoneum from the injury induced by hypertonic dialysis solution. J Nephrol 25(1):90–95

    Article  CAS  PubMed  Google Scholar 

  83. Ni J, Cnops Y, Debaix H, Boisdé I, Verbavatz JM, Devuyst O (2005) Functional and molecular characterization of a peritoneal dialysis model in the C57BL/6J mouse. Kidney Int 67(5):2021–2031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Natural Science Foundation from Jilin Provincial Science and Technology Department (201215068 and 201015160) and Key Laboratory Funds from Jilin Department of Health (2012Z085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, S., Li, H. et al. A review of rodent models of peritoneal dialysis and its complications. Int Urol Nephrol 47, 209–215 (2015). https://doi.org/10.1007/s11255-014-0829-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0829-4

Keywords

Navigation