Skip to main content
Log in

Glomerular filtration rate in prospective living kidney donors

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Measurements of glomerular filtration rate (GFR) are frequently interpreted assuming a linear variation with age. Nonlinear relationships may give a better representation of the changes associated with normal ageing.

Methods

This was a retrospective study of 904 subjects (468 women, 436 men; age range 18–84 years) undergoing assessment as prospective living kidney donors. GFR was evaluated from 51Cr-EDTA plasma clearance using blood samples taken at 2, 3 and 4 h. The slope–intercept GFR was corrected for body surface area (BSA) using the Haycock formula and for the fast exponential using the Brochner-Mortensen equation. The relationship between age, gender and GFR was examined using best-fit curve analysis. Nonlinear relationships with age were explored using fractional polynomials.

Results

There was no gender difference in BSA-corrected GFR over five decades of age (P = 0.40). However, female donors with a body mass index >30 kg/m2 had a statistically significantly lower GFR than nonobese women (P < 0.01). The best-fit relationship between age and GFR was nonlinear and described using a fractional polynomial model of degree 1 (GFR = 103.9–0.0061 × Age2 mL/min/1.73 m2) with a root mean standard error of 12.9 mL/min/1.73 m2. The residual variance for this model was significantly smaller than for the best-fit linear model (P = 0.006).

Conclusions

GFR measurements in prospective living kidney donors are best corrected for age using a nonlinear relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Castro AF, Coresh J (2009) CKD surveillance using laboratory data from the population-based National Health and Nutrition Examination Survey (NHANES). Am J Kidney Dis 53(3 Suppl 3):S46–S55

    Article  PubMed  Google Scholar 

  2. Friedewald JJ, Reese PP (2012) The kidney-first initiative: what is the current status of preemptive transplantation? Adv Chronic Kidney Dis 19:252–256

    Article  PubMed  Google Scholar 

  3. Craig AJ, Samol J, Heenan SD, Irwin AG, Britten A (2012) Overestimation of carboplatin doses is avoided by radionuclide GFR measurement. Br J Cancer 2012 Aug 30. doi: 10.1038/bjc.2012.393. [Epub ahead of print]

  4. British Transplantation Society. United Kingdom guidelines for living donor kidney transplantation, 3rd edn, May 2011. Available at: http://www.bts.org.uk/MBR/Clinical/Guidelines/Current/Member/Clinical/Current_Guidelines.aspx. Accessed 30 Jan 13

  5. Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS (2004) Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun 25:759–769

    Article  PubMed  Google Scholar 

  6. Rehling M, Møller ML, Thamdrup B, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci Lond 66:613–619

    PubMed  CAS  Google Scholar 

  7. Delanaye P, Weekers L, Dubois BE, Cavalier E, Detry O, Squifflet JP, Krzesinski JM (2012) Outcome of the living kidney donor. Nephrol Dial Transpl 27:41–50

    Article  Google Scholar 

  8. Morgan BR, Ibrahim HN (2011) Long-term outcomes of kidney donors. Curr Opin Nephrol Hypertens 20:605–609

    Article  PubMed  Google Scholar 

  9. Winearls CG, Glassock RJ (2011) Classification of chronic kidney disease in the elderly: pitfalls and errors. Nephron Clin Pract 119(Suppl 1):c2–c4

    Article  PubMed  Google Scholar 

  10. Glassock RJ, Winearls C (2008) The global burden of chronic kidney disease: how valid are the estimates? Nephron Clin Pract 110:c39–c46

    Article  PubMed  Google Scholar 

  11. Royston P, Ambler G, Sauerbrei W (1999) The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol 28:964–974

    Article  PubMed  CAS  Google Scholar 

  12. Grewal GS, Blake GM (2005) Reference data for 51Cr-EDTA measurements of the glomerular filtration rate derived from live kidney donors. Nucl Med Commun 26:61–65

    Article  PubMed  Google Scholar 

  13. Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93:62–66

    Article  PubMed  CAS  Google Scholar 

  14. Bröchner-Mortensen J (1972) A simple method for the determination of glomerular filtration rate. Scand J Clin Lab Invest 30:271–274

    Article  PubMed  Google Scholar 

  15. Bröchner-Mortensen J, Haahr J, Christoffersen J (1974) A simple method for accurate assessment of the glomerular filtration rate in children. Scand J Clin Lab Invest 33:140–143

    Article  PubMed  Google Scholar 

  16. Peters AM, Howard B, Neilly MD, Seshadri N, Sobnack R, Hooker CA et al (2012) The reliability of glomerular filtration rate measured from plasma clearance: a multi-centre study of 1,878 healthy potential renal transplant donors. Eur J Nucl Med Mol Imaging 39:715–722

    Article  PubMed  Google Scholar 

  17. Rehling M (2012) Measuring glomerular filtration rate from plasma clearance of 51Cr-EDTA: quality assurance. Eur J Nucl Med Mol Imaging 39:713–714

    Article  PubMed  Google Scholar 

  18. Peters AM, Perry L, Hooker CA, Howard B, Neilly MD, Seshadri N et al (2012) Extracellular fluid volume and glomerular filtration rate in 1878 healthy potential renal transplant donors: effects of age, gender, obesity and scaling. Nephrol Dial Transpl 27:1429–1437

    Article  CAS  Google Scholar 

  19. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, pp 689–698

    Google Scholar 

  20. Rule AD, Cornell LD, Poggio ED (2011) Senile nephrosclerosis–does it explain the decline in glomerular filtration rate with aging? Nephron Physiol 119(Suppl 1):6–11

    Article  Google Scholar 

  21. Matsushita K, Mahmoodi BK, Woodward M, Emberson JR, Jafar TH, Jee SH et al (2012) Comparison of risk prediction using the CKD-EPI equation and the MDRD study equation for estimated glomerular filtration rate. JAMA 307:1941–1951

    Article  PubMed  CAS  Google Scholar 

  22. Delanaye P, Schaeffner E, Ebert N, Cavalier E, Mariat C, Krzesinski JM, Moranne O (2012) Normal reference values for glomerular filtration rate: what do we really know? Nephrol Dial Transpl 27:2664–2672

    Article  Google Scholar 

  23. Botev R, Mallié JP, Wetzels JF, Couchoud C, Schück O (2011) The clinician and estimation of glomerular filtration rate by creatinine-based formulas: current limitations and quo vadis. Clin J Am Soc Nephrol 6:937–950

    Article  PubMed  Google Scholar 

  24. Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW (1976) The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 31:155–163

    Article  PubMed  CAS  Google Scholar 

  25. Lindeman RD, Tobin JD, Shock NW (1984) Association between blood pressure and the rate of decline in renal function with age. Kidney Int 26:861–868

    Article  PubMed  CAS  Google Scholar 

  26. Lindeman RD, Tobin JD, Shock NW (1985) Longitudinal studies on the rate of decline in renal function with age. J Am Geriatr Soc 33:278–285

    PubMed  CAS  Google Scholar 

  27. Granerus G, Aurell M (1981) Reference values for 51Cr-EDTA clearance as a measure of glomerular filtration rate. Scand J Clin Lab Invest 41:611–616

    Article  PubMed  CAS  Google Scholar 

  28. Hamilton D, Riley P, Miola U, Mousa D, Popovich W, al Khader A (2000) Total plasma clearance of 51Cr-EDTA: variation with age and sex in normal adults. Nucl Med Commun 21:187–192

    Article  PubMed  CAS  Google Scholar 

  29. Berg UB (2006) Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors. Nephrol Dial Transpl 21:2577–2582

    Article  CAS  Google Scholar 

  30. Douville P, Martel AR, Talbot J, Desmeules S, Langlois S, Agharazii M (2009) Impact of age on glomerular filtration estimates. Nephrol Dial Transplant 24:97–103

    Article  PubMed  Google Scholar 

  31. O’Brien B, Mastoridis S, Sabharwal A, Hakim N, Taube D, Papalois V (2012) Expanding the donor pool: living donor nephrectomy in the elderly and the overweight. Transplantation 93:1158–1165

    Article  PubMed  Google Scholar 

  32. Young A, Kim SJ, Speechley MR, Huang A, Knoll GA, Prasad GV et al (2011) Donor nephrectomy outcomes research (DONOR) network. Accepting kidneys from older living donors: impact on transplant recipient outcomes. Am J Transplant 11:743–750

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen M. Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, G.M., Sibley-Allen, C., Hilton, R. et al. Glomerular filtration rate in prospective living kidney donors. Int Urol Nephrol 45, 1445–1452 (2013). https://doi.org/10.1007/s11255-013-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-013-0408-0

Keywords

Navigation