Skip to main content

Advertisement

Log in

Comparison of serum cystatin C and creatinine changes after cardiopulmonary bypass in patients with normal preoperative kidney function

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Serum creatinine is used ubiquitously to estimate glomerular filtration rate and to diagnose acute kidney injury after cardiac surgery. Serum cystatin C is a novel biomarker that has emerged as a possible diagnostic alternative to serum creatinine. It is unclear if the dynamic changes in serum cystatin C immediately following cardiopulmonary bypass (CPB) differ from those of serum creatinine in patients with normal preoperative kidney function.

Methods

We compared changes in serum levels of creatinine and cystatin C by measuring them serially in 19 patients undergoing CPB. Within-patient differences for serum creatinine and serum cystatin C were compared by repeated measures ANOVA.

Results

Serum creatinine and cystatin C levels showed significant correlation with each other. Both biomarkers showed a significant decrease after CPB, but their serum concentrations reverted to pre-CPB levels within 12 h. Serum levels of serum creatinine remained unchanged from baseline levels throughout 72-h post-CPB. In contrast, serum cystatin C levels rose further and became significantly higher compared to baseline within 48 h. Serum cystatin C remained significantly elevated at 48- and 72-h post-CPB.

Conclusions

Processes that determine the serum concentrations of serum creatinine and cystatin C in the post-CPB period affect the two biomarkers differently, suggesting that the two are not interchangeable as diagnostic markers of glomerular filtration rate. Future studies are needed to examine if these discrepancies are related to differences in their production rates, in their ability to detect small changes in glomerular filtration rate, or to a combination of these, and to determine the effect of such differences on the diagnostic and prognostic accuracy of the two biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hoste EA, Kellum JA (2006) Acute kidney injury: epidemiology and diagnostic criteria. Curr Opin Crit Care 12:531–537

    Article  PubMed  Google Scholar 

  2. Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, Himmelfarb J, Collins AJ (2006) Incidence and mortality of acute renal failure in Medicare beneficiaries 1992 to 2001. J Am Soc Nephrol 17:1135–1142

    Article  PubMed  Google Scholar 

  3. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Article  PubMed  Google Scholar 

  4. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  5. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104:343–348

    Article  PubMed  CAS  Google Scholar 

  6. Bove T, Calabro MG, Landoni G, Aletti G, Marino G, Crescenzi G, Rosica C, Zangrillo A (2004) The incidence and risk of acute renal failure after cardiac surgery. J Cardiothorac Vasc Anesth 18:442–445

    Article  PubMed  Google Scholar 

  7. Conlon PJ, Stafford-Smith M, White WD, Newman MF, King S, Winn MP, Landolfo K (1999) Acute renal failure following cardiac surgery. Nephrol Dial Transplant 14:1158–1162

    Article  PubMed  CAS  Google Scholar 

  8. Fischer UM, Weissenberger WK, Warters RD, Geissler HJ, Allen SJ, Mehlhorn U (2002) Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion 17:401–406

    Article  PubMed  Google Scholar 

  9. Suen WS, Mok CK, Chiu SW, Cheung KL, Lee WT, Cheung D, Das SR, He GW (1998) Risk factors for development of acute renal failure (ARF) requiring dialysis in patients undergoing cardiac surgery. Angiology 49:789–800

    Article  PubMed  CAS  Google Scholar 

  10. Sirvinskas E, Andrejaitiene J, Raliene L, Nasvytis L, Karbonskiene A, Pilvinis V, Sakalauskas J (2008) Cardiopulmonary bypass management and acute renal failure: risk factors and prognosis. Perfusion 23:323–327

    Article  PubMed  CAS  Google Scholar 

  11. Abu-Omar Y, Ratnatunga C (2006) Cardiopulmonary bypass and renal injury. Perfusion 21:209–213

    Article  PubMed  Google Scholar 

  12. Haase M, Bellomo R, Haase-Fielitz A (2010) Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J Am Coll Cardiol 55:2024–2033

    Article  PubMed  CAS  Google Scholar 

  13. Haase M, Shaw A (2010) Acute kidney injury and cardiopulmonary bypass: special situation or same old problem? Contrib Nephrol 165:33–38

    PubMed  Google Scholar 

  14. Lameire N, Hoste E (2004) Reflections on the definition, classification, and diagnostic evaluation of acute renal failure. Curr Opin Crit Care 10:468–475

    Article  PubMed  Google Scholar 

  15. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    Article  PubMed  CAS  Google Scholar 

  16. Svenmarker S, Haggmark S, Holmgren A, Naslund U (2011) Serum markers are not reliable measures of renal function in conjunction with cardiopulmonary bypass. Interact CardioVasc Thorac Surg 12:713–717

    Article  PubMed  Google Scholar 

  17. Moran SM, Myers BD (1985) Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int 27:928–937

    Article  PubMed  CAS  Google Scholar 

  18. Bronden B, Eyjolfsson A, Blomquist S, Dardashti A, Ederoth P, Bjursten H (2011) Evaluation of cystatin C with iohexol clearance in cardiac surgery. Acta Anaesthesiol Scand 55:196–202

    Article  PubMed  CAS  Google Scholar 

  19. Felicio ML, Andrade RR, Castiglia YM, Silva MA, Vianna PT, Martins AS (2009) Cystatin C and glomerular filtration rate in the cardiac surgery with cardiopulmonary bypass. Rev Bras Cir Cardiovasc 24:305–311

    Article  PubMed  Google Scholar 

  20. Wang QP, Gu JW, Zhan XH, Li H, Luo XH (2009) Assessment of glomerular filtration rate by serum cystatin C in patients undergoing coronary artery bypass grafting. Ann Clin Biochem 46:495–500

    Article  PubMed  CAS  Google Scholar 

  21. Shlipak MG, Praught ML, Sarnak MJ (2006) Update on cystatin C: new insights into the importance of mild kidney dysfunction. Curr Opin Nephrol Hypertens 15:270–275

    Article  PubMed  CAS  Google Scholar 

  22. McMurray MD, Trivax JE, McCullough PA (2009) Serum cystatin C, renal filtration function, and left ventricular remodeling. Circ Heart Fail 2:86–89

    Article  PubMed  Google Scholar 

  23. Lisowska-Myjak B (2010) Serum and urinary biomarkers of acute kidney injury. Blood Purif 29:357–365

    Article  PubMed  CAS  Google Scholar 

  24. Momeni M, Baele P, Jacquet L, Mourad M, Waterloos H, Wallemacq P (2007) Cystatin C in cardiac surgery. Acta Anaesthesiol Belg 58:107–112

    PubMed  CAS  Google Scholar 

  25. Ristikankare A, Poyhia R, Kuitunen A, Skrifvars M, Hammainen P, Salmenpera M, Suojaranta-Ylinen R (2010) Serum cystatin C in elderly cardiac surgery patients. Ann Thorac Surg 89:689–694

    Article  PubMed  Google Scholar 

  26. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  Google Scholar 

  27. Finney H, Newman DJ, Price CP (2000) Adult reference ranges for serum cystatin C, creatinine and predicted creatinine clearance. Ann Clin Biochem 37(Pt 1):49–59

    Article  PubMed  CAS  Google Scholar 

  28. Pei X, Liu Q, He J, Bao L, Yan C, Wu J, Zhao W (2012) Are cystatin C-based equations superior to creatinine-based equations for estimating GFR in Chinese elderly population? Int Urol Nephrol 44:1877–1884

    Article  PubMed  CAS  Google Scholar 

  29. Abouchacra S, Chaaban A, Hakim R, Gebran N, El-Jack H, Rashid F, Boobes Y, Muhairi A, Hussain Q, Khan I, Chedid F, Negelkerke N (2012) Renal biomarkers for assessment of kidney function in renal transplant recipients: how do they compare? Int Urol Nephrol 44:1871–1876

    Article  PubMed  CAS  Google Scholar 

  30. Filler G, Bokenkamp A, Hofmann W, Le BT, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR—history, indications, and future research. Clin Biochem 38:1–8

    Article  PubMed  CAS  Google Scholar 

  31. Rossaint J, Berger C, Van AH, Scheld HH, Zahn PK, Rukosujew A, Zarbock A (2012) Cardiopulmonary bypass during cardiac surgery modulates systemic inflammation by affecting different steps of the leukocyte recruitment cascade. PLoS ONE 7:e45738

    Article  PubMed  CAS  Google Scholar 

  32. Coca SG, Yalavarthy R, Concato J, Parikh CR (2008) Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 73:1008–1016

    Article  PubMed  CAS  Google Scholar 

  33. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, Bonventre JV (2008) Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int 73:863–869

    Article  PubMed  CAS  Google Scholar 

  34. Soni SS, Cruz D, Bobek I, Chionh CY, Nalesso F, Lentini P, de Cal M, Corradi V, Virzi G, Ronco C (2010) NGAL: a biomarker of acute kidney injury and other systemic conditions. Int Urol Nephrol 42:141–150

    Article  PubMed  CAS  Google Scholar 

  35. Kohei J, Ishida H, Kazunari T, Tsuchiya K, Nitta K (2012) Neutrophil gelatinase-associated lipocalin is a sensitive biomarker for the early diagnosis of acute rejection after living-donor kidney transplantation. Int Urol Nephrol [Epub ahead of print]

  36. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57:1752–1761

    Article  PubMed  CAS  Google Scholar 

  37. Tutarel O, Kielstein JT (2012) Symmetrical dimethylarginine as a biomarker for acute kidney injury. Ann Thorac Surg 93:1763–1764

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financed by Stiftelseförvaltningen–Hjärtfonden and US Stiftelse för medicinsk forskning: Hjärt-kärlforskning (92005). Part of this material was presented as oral presentation at 32nd Cardiothoracic Surgery Symposium and won the 13th Annual Utley Award in San Diego, February 29–March 3, 2012. Dr. Kovesdy is an employee of the US Department of Veterans Affairs. Opinions expressed in this paper are those of the authors and do not necessarily reflect the opinions of the US Department of Veterans Affairs.

Conflict of interest

None of the authors declared any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba P. Kovesdy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11255_2013_403_MOESM1_ESM.tif

Online Figure 1 Mean (SD) serum creatinine values plotted over the first 72 h postoperatively. N = 19; *p < 0.05 compared to baseline. Supplementary material 1 (TIFF 313 kb)

11255_2013_403_MOESM2_ESM.tif

Online Figure 2 Mean (SD) serum cystatin C values plotted over the first 72 h postoperatively. N = 19; *p < 0.05 compared to baseline. Supplementary material 2 (TIFF 298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, A.S., Kovesdy, C.P., Kvitting, JP.E. et al. Comparison of serum cystatin C and creatinine changes after cardiopulmonary bypass in patients with normal preoperative kidney function. Int Urol Nephrol 45, 1597–1603 (2013). https://doi.org/10.1007/s11255-013-0403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-013-0403-5

Keywords

Navigation