Skip to main content
Log in

Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD

  • Nephrology – Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Administration of intravenous iron to supplement erythropoiesis stimulating agents (ESAs) has become a common practice in the management of anemia in patients with end-stage renal disease. Randomized clinical trials of anemia correction in this population have shown more adverse outcomes in CKD and ESRD patients assigned to the higher hemoglobin targets. Retrospective analysis of these trials suggests that morbidity is higher in subjects who fail to achieve the designated hemoglobin target and are typically exposed to higher doses of ESAs and iron than those that easily achieve the intended targets. Intravenous iron administration circumvents the natural biologic mechanisms for handling and utilization of iron. There is in vitro and in vivo evidence that intravenous iron preparations can cause oxidative stress, endothelial dysfunction, inflammation, impaired immunity, and renal injury. Since iron overload is known to promote endothelial dysfunction, cardiovascular disease, and immune dysfunction which are the leading causes of premature mortality in CKD and ESRD patients, it is imperative to exercise caution with the use of IV iron preparations in this population. The present review is intended to provide a brief overview of the potential adverse effects of the overzealous use of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vaziri N (2008) Anemia and anemia correction: surrogate markers or causes of mortality in chronic kidney disease. Nat Clin Pract Nephrol 8:436–445

    Article  Google Scholar 

  2. Vaziri N, Zhou X (2009) Potential mechanisms of adverse outcomes in trials of anemia correction with erythropoietin in chronic kidney disease. Nephrol Dial Transplant 24:1082–1088

    Article  PubMed  CAS  Google Scholar 

  3. Ma J, Ebben J, Xia H, Collins A (1999) Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol 10:610–619

    PubMed  CAS  Google Scholar 

  4. Collins A, Li S, Peter W et al (2001) Death, hospitalization, and economic associations among incident hemodialysis patients with hematocrit values of 36–39%. J Am Soc Nephrol 12:2465–2473

    PubMed  CAS  Google Scholar 

  5. Robinson B, Joffe M, Berns J, Pisoni R, Port F, Feldman H (2005) Anemia and mortality in hemodialysis patients: accounting for morbidity and treatment variables updated over time. Kidney Int 68:2323–2330

    Article  PubMed  Google Scholar 

  6. Locatelli F, Pisoni R, Combe C et al (2004) Anemia in haemodialysis patients of five European countries: association with morbidity and mortality in the dialysis outcomes and practice patterns study (DOPPS). Nephrol Dial Transplant 19:121–132

    Article  PubMed  Google Scholar 

  7. Xia H, Ebben J, Ma J, Collins A (1999) Hematocrit levels and hospitalization risks in hemodialysis patients. J Am Soc Nephrol 10:1309–1316

    PubMed  CAS  Google Scholar 

  8. Li S, Collins A (2004) Association of hematocrit value with cardiovascular morbidity and mortality in incident hemodialysis patients. Kidney Int 65:626–633

    Article  PubMed  Google Scholar 

  9. Ofsthun N, Labrecque J, Lacson E, Keen M, Lazarus J (2003) The effects of higher hemoglobin levels on mortality and hospitalization in hemodialysis patients. Kidney Int 63:1908–1914

    Article  PubMed  Google Scholar 

  10. Wolfe R, Hulbert-Shearon T, Ashby V, Mahadevan S, Port F (2002) Improvements in dialysis patient mortality are associated with improvements in urea reduction ration and hematocrit, 1999–2002. Am J Kidney Dis 45:127–135

    Article  Google Scholar 

  11. NKF-K/DOQI (2006) Clinical practice guidelines for anemia of chronic kidney disease. Am J Kidney Dis 47(Suppl 4):S1

    Google Scholar 

  12. Besarab A, Bolton W, Browne J et al (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. New Engl J Med 339:584–590

    Article  PubMed  CAS  Google Scholar 

  13. Drueke T, Locatelli F, Clyne N et al (2006) Normalization of hemoglobin level in patients with chronic kidney disease and anemia. New Engl J Med 355:2071–2084

    Article  PubMed  CAS  Google Scholar 

  14. Singh A, Szczech L, Tang K et al (2006) Correction of anemia with epoetin alfa in chronic kidney disease. New Engl J Med 355:2085–2098

    Article  PubMed  CAS  Google Scholar 

  15. NKF-K/DOQI (2007) Clinical practice guidelines and clinical practice recommendations for anemia in chronic kidney disease: 2007 update of hemoglobin target. Am J Kidney Dis 50:474

    Google Scholar 

  16. Spittle M, Hoenich N, Handelman G, Adhikarla R, Homel P, Levin N (2001) Oxidative stress and inflammation in hemodialysis patients. Am J Kidney Dis 38:1408–1413

    Article  PubMed  CAS  Google Scholar 

  17. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    Article  PubMed  CAS  Google Scholar 

  18. Schulz E, Gori T, Munzel T (2011) Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 34:665–673

    Article  PubMed  CAS  Google Scholar 

  19. Szczech L, Barnhart H, Inrig J et al (2008) Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int 74:791–798

    Article  PubMed  CAS  Google Scholar 

  20. Kuo C, Lee C, Chuang C, Su Y, Chen J (2005) Recombinant human erythropoietin independence in chronic hemodialysis patients: clinical features, iron homeostasis and erythropoiesis. Clin Nephrol 63:92–97

    PubMed  CAS  Google Scholar 

  21. Goodkin DF, Fuller DS, Robinson B et al (2011) Naturally occurring higher hemoglobin concentration does not increase mortality among hemodialysis patients. J Am Soc Nephrol 22:358–365

    Article  PubMed  Google Scholar 

  22. Parfrey P, Foley R, Wittreich B et al (2005) Double-blind comparison of full and partial anemia correction in incident hemodialysis patients without symptomatic heart disease. J Am Soc Nephrol 16:2180–2189

    Article  PubMed  Google Scholar 

  23. Goodkin D (2009) The normal hematocrit cardiac trial revisited. Semin Dial 22:495–502

    Article  PubMed  Google Scholar 

  24. Jacobs A (1977) Low molecular weight intracellular iron transport compounds. Blood 50:433–439

    PubMed  CAS  Google Scholar 

  25. Burkitt M, Mason R (1991) Direct evidence for in vivo hydroxyl-radical generation in experimental iron overload: An ESR spin-trapping investigation. Proc Natl Acad Sci USA 88:8440–8444

    Article  PubMed  CAS  Google Scholar 

  26. Broedbaek K, Poulsen H, Weimann A et al (2009) Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis. Free Radic Biol Med 47:1230–1233

    Article  PubMed  CAS  Google Scholar 

  27. Kell D (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2:2

    Article  PubMed  Google Scholar 

  28. Beshara S, Lundquist H, Sundin J et al (1999) Kinetic analysis of 52 Fe-labelled iron (III) hydroxide-sucrose complex following bolus administration using positron emission tomography. Br J Hematol 104:288–295

    Article  CAS  Google Scholar 

  29. Zanen A, Adriaansen H, van Bommel E, Posthuma R, de Jong G (1996) Oversaturation of transferrin after intravenous ferric gluconate (ferrlecit) in haemodialysis patients. Nephrol Dial Transplant 11:820–824

    PubMed  CAS  Google Scholar 

  30. Kooistra M, Kersting S, Lu G et al (2002) Nontransferrin-bound iron in the plasma of the haemodialysis patients after intravenous iron saccharate infusion. Eur J Clin Investig 32(Suppl 1):36–41

    Article  CAS  Google Scholar 

  31. Henderson P, Hillman R (1969) Characteristics of iron dextran utilization in man. Blood 34:357–375

    PubMed  CAS  Google Scholar 

  32. Van Wyck D, Anderson J, Johnson K (2004) Labile iron in parenteral iron formulations: a quantitative and comparative study. Nephrol Dial Transplant 19:561–565

    Article  PubMed  Google Scholar 

  33. Scheiber-Mojdehkar B, Sturm B, Plank L, Kryzer I, Goldenberg H (2003) Influence of parenteral iron preparations on non-transferrin bound iron uptake, the iron regulatory protein and the expression of ferritin and the divalent metal transporter DMT-1 in HepG2 human hepatoma cells. Biochem Pharmacol 65:1973–1978

    Article  PubMed  CAS  Google Scholar 

  34. Provenzano R, Schiller B, Rao M et al (2009) Ferumoxytol as an intravenous iron replacement therapy in hemodialysis patients. Clin J Am Soc Nephrol 4:386–393

    Article  PubMed  CAS  Google Scholar 

  35. Spinowitz B, Kausz A, Baptista J et al (2008) Ferumoxytol for treating iron deficiency anemia in CKD. J Am Soc Nephrol 19:1599–1605

    Article  PubMed  CAS  Google Scholar 

  36. Johnson A, Becker K, Zager R (2010) Parenteral iron formulations differentially affect MCP-1, HO-1, and NGAL gene expression and renal responses to injury. Am J Renal Phys 299:F426–F435

    Article  CAS  Google Scholar 

  37. Lu M, Suh K, Lee H, Cohen M, Rieves D, Pazdur R (2010) FDA review of ferumoxytol (feraheme) for the treatment of iron deficiency anemia in adults with chronic kidney disease. Am J Hematol 85:315–319

    PubMed  CAS  Google Scholar 

  38. US Renal Data System (2010) USRDS 2010 annual data report: atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, Bethesda

    Google Scholar 

  39. Zager R, Johnson C, Hanson S, Wasse H (2002) Parenteral iron formulations: a comparative toxicologic analysis and mechanisms of cell injury. Am J Kidney Dis 40:90–103

    Article  PubMed  CAS  Google Scholar 

  40. Rooyakers T, Stroes E, Kooistra M et al (2002) Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. Eur J Clin Investig 32(Suppl 1):9–16

    Article  Google Scholar 

  41. Roob J, Khoschsorur G, Tiran A et al (2000) Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol 11:539–549

    PubMed  CAS  Google Scholar 

  42. Garcia-Fernandez N, Echevarria A, Sanchez-Ibarrola A, Paramo J, Coma-Cannela I (2010) Randomized clinical trial on acute effects of i.v. iron sucrose during hemodialysis. Nephrology 15:178–183

    Article  PubMed  CAS  Google Scholar 

  43. Salahudeen A, Oliver B, Bower J, Roberts L (2001) Increase in plasma esterified F2-isoprostanes following intravenous iron infusion in patients on hemodialysis. Kidney Int 60:1525–1531

    Article  PubMed  CAS  Google Scholar 

  44. Kuo K, Hung S, Wei Y, Tarng D (2008) Intravenous iron exacerbates oxidative DNA damage in peripheral blood lymphocytes in chronic hemodialysis patients. J Am Soc Nephrol 19:1817–1826

    Article  PubMed  CAS  Google Scholar 

  45. Tovbin D, Mazour D, Voroblov M, Chalmovitz C, Meyerstein N (2002) Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation. Am J Kidney Dis 40:1005–1012

    Article  PubMed  CAS  Google Scholar 

  46. Agarwal R, Vasavada N, Sachs N, Chase S (2004) Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int 65:2279–2289

    Article  PubMed  CAS  Google Scholar 

  47. Kielstein J, Boger R, Bode-Boger S (1999) Asymmetric dimethyl arginine concentrations differ in patients with end stage renal disease: relationship to treatment method and atherosclerotic disease. J Am Soc Nephrol 10:594–600

    PubMed  CAS  Google Scholar 

  48. Zoccali C, Bode-Boger S, Mallamaci F et al (2001) Plasma concentrations of asymmetrical dimethyl arginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358:2113–2117

    Article  PubMed  CAS  Google Scholar 

  49. Matsuguma K, Ueda S, Yamagishi S et al (2006) Molecular mechanisms for elevation of asymmetric dimethyl arginine and its role for hypertension in chronic kidney disease. J Am Soc Nephrol 17:2176–2183

    Article  PubMed  CAS  Google Scholar 

  50. Kartikasari A, Georgiou N, Visseren F, van Kats-Renaud H, van Sweder A, Marx J (2006) Endothelial activation and induction of monocyte adhesion by nontransferrin-bound iron present in human sera. FASEB J 20:353–355

    PubMed  CAS  Google Scholar 

  51. Schaller G, Scheibert-Mohdehkar B, Wolzt M et al (2005) Intravenous iron increases labile serum iron but does not impair blood flow reactivity in dialysis patients. Kidney Int 68:2814–2822

    Article  PubMed  CAS  Google Scholar 

  52. Reis K, Guz G, Ozdemir H et al (2005) Intravenous iron therapy as a possible risk factor for atherosclerosis in end stage renal disease. Int Heart J 46:255–264

    Article  PubMed  CAS  Google Scholar 

  53. Duffy S, Biegelsen E, Holbrook M et al (2001) Iron chelation improves endothelial cell function in patients with coronary artery disease. Circulation 103:2799–2804

    PubMed  CAS  Google Scholar 

  54. Zager R (2005) Parenteral iron treatment induces MCP-1 accumulation in plasma, normal kidneys, and in experimental nephropathy. Kidney Int 68:1533–1542

    Article  PubMed  CAS  Google Scholar 

  55. Agarwal R (2006) Proinflammatory effects of iron sucrose in chronic kidney disease. Kidney Int 69:1259–1263

    Article  PubMed  CAS  Google Scholar 

  56. Weiss G, Meusberger E, Radacher G, Garimorth K, Neyer U, Myaer G (2003) Effect of iron treatment on circulating cytokine levels in ESRD patients receiving recombinant human erythropoietin. Kidney Int 64:572–578

    Article  PubMed  CAS  Google Scholar 

  57. Sarnak M, Jaber B (2000) Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney Int 58:1758–1764

    Article  PubMed  CAS  Google Scholar 

  58. Kato S, Chmielewski M, Honda H et al (2008) Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol 3:1526–1533

    Article  PubMed  Google Scholar 

  59. Djeha A, Brock J (1992) Uptake and intracellular handling of iron from transferrin and iron chelates by mitogen stimulated mouse lymphocytes. Biochem Biopys Acta 1133:147–152

    Article  CAS  Google Scholar 

  60. Deicher R, Ziai F, Cohen G, Mullner M, Horl W (2003) High dose parenteral iron sucrose depresses neutrophil intracellular killing capacity. Kidney Int 64:728–736

    Article  PubMed  CAS  Google Scholar 

  61. Guo D, Jaber B, Lee S et al (2002) Impact of iron dextran on polymorphonuclear cell function among hemodialysis patients. Clin Nephrol 58:134–142

    PubMed  CAS  Google Scholar 

  62. Gupta A, Zhuo J, Zha J, Reddy S, Olp J, Pai A (2010) Effect of different intravenous iron preparations on lymphocyte intracellular reactive oxygen species generation and subpopulation survival. BMC Nephrol 17:11–16

    Google Scholar 

  63. Tenopoulou M, Doulias P, Barbouti A, Brunk U, Galaris D (2005) Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis. Biochem J 387:703–710

    Article  PubMed  CAS  Google Scholar 

  64. Zager R, Johnson A, Hanson S (2004) Parenteral iron nephrotoxicity: potential mechanisms and consequences. Kidney Int 66:144–156

    Article  PubMed  CAS  Google Scholar 

  65. Agarwal R (2005) On the nature of proteinuria with acute renal injury in patients with chronic kidney disease. Am J Physiol Renal Physiol 288:F265–F271

    Article  PubMed  CAS  Google Scholar 

  66. Agarwal R, Rizkala A, Kaskas M, Minasian R, Trout J (2007) Iron sucrose causes greater proteinuria than ferric gluconate in non-dialysis chronic kidney disease. Kidney Int 72:638–642

    Article  PubMed  CAS  Google Scholar 

  67. Leehey D, Palubiak D, Chebrolu S, Agarwal R (2005) Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: a pilot study. Nephrol Dial Transplant 20:135–140

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding sources include NIH F32DK085965-O1A1 (PVB), UT Southwestern O'Brien Kidney Research Core (NIH P30DK079328), and UT Southwestern Clinical Translational Science Award (NIH UL 1RR024982).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nosratola D. Vaziri or Xin J. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Buren, P., Velez, R.L., Vaziri, N.D. et al. Iron overdose: a contributor to adverse outcomes in randomized trials of anemia correction in CKD. Int Urol Nephrol 44, 499–507 (2012). https://doi.org/10.1007/s11255-011-0028-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-011-0028-5

Keywords

Navigation