Skip to main content

Advertisement

Log in

Pygeum africanum: effect on oxidative stress in early diabetes-induced bladder

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect of Pygeum africanum on oxidative stress and functional changes of the bladder after diabetes induction.

Materials and methods

Thirty-two adult Wistar male rats were treated daily for 8 weeks and grouped as follows: Control group (n = 6), Streptozotocin-induced diabetic group (n = 10), diabetes plus P. africanum group (n = 10), and control plus P. africanum group (n = 6). After diabetes induction for 4 weeks, the diabetes plus P. africanum and control plus P. africanum groups were fed with P. africanum (100 mg/kg, orally) in peanut oil for another 4 weeks. The catalase, superoxide dismutase activity, and malondialdehyde levels were measured as a marker of lipid peroxidation. The levels of inducible nitric oxide synthase were also evaluated. Urodynamic studies were performed to evaluate the functional changes of diabetic bladders after P. africanum treatment.

Results

The catalase and superoxide dismutase activities significantly increased (P < 0.05) and maleic dialdehyde levels significantly decreased from diabetic plus P. africanum group compared with diabetic group (P < 0.05). Immunohistochemical studies showed a significantly decreased number of inducible nitric oxide synthase-positive cells in diabetic plus P. africanum group compared with diabetic group (P < 0.05). In diabetic plus P. africanum group, maximal bladder volume significantly decreased, while bladder pressure and maximal bladder pressure significantly increased compared with diabetic group (P < 0.05).

Conclusions

Early treatment with P. africanum could effectively suppress the oxidative stress status in diabetic bladder and may slow down the process of diabetic cystopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown JS, Wessells H, Chancellor MB, Howards SS, Stamm WE, Stapleton AE, Steers WD, Van Den Eeden SK, McVary KT (2005) Urologic complications of diabetes. Diabetes Care 28(1):177–185

    Article  PubMed  Google Scholar 

  2. Olapade-Olaopa EO, Morley RN, Carter CJ, Walmsley BH (1997) Diabetic cystopathy presenting as primary acute urinary retention in a previously undiagnosed young male diabetic patient. J Diabetes Complicat 11(6):350–351

    Article  CAS  PubMed  Google Scholar 

  3. Jiang YJ, Gong DX, Liu HB, Yang CM, Sun ZX, Kong CZ (2008) Ability of alpha-lipoic acid to reverse the diabetic cystopathy in a rat model. Acta Pharmacol Sin 29(6):713–719

    Article  CAS  PubMed  Google Scholar 

  4. Yoshimura N, Chancellor MB, Andersson KE, Christ GJ (2005) Recent advances in understanding the biology of diabetes-associated bladder complications and novel therapy. BJU Int 95(6):733–738

    Article  PubMed  Google Scholar 

  5. Bradley WE (1980) Diagnosis of urinary bladder dysfunction in diabetes mellitus. Ann Intern Med 92(2 Pt 2):323–326

    CAS  PubMed  Google Scholar 

  6. Ueda T, Yoshimura N, Yoshida O (1997) Diabetic cystopathy: relationship to autonomic neuropathy detected by sympathetic skin response. J Urol 157(2):580–584

    Article  CAS  PubMed  Google Scholar 

  7. Yongzhi L, Benkang S, Jianping Z, Lingxia R, Wei B, Yaofeng Z, Keqin Z, Laudon V (2008) Expression of transforming growth factor beta1 gene, basic fibroblast growth factor gene and hydroxyproline in diabetes-induced bladder dysfunction in a rat model. Neurourol Urodyn 27(3):254–259

    Article  PubMed  CAS  Google Scholar 

  8. Beshay E, Carrier S (2004) Oxidative stress plays a role in diabetes-induced bladder dysfunction in a rat model. Urology 64(5):1062–1067

    Article  PubMed  Google Scholar 

  9. Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 43(5):550–557

    Article  CAS  PubMed  Google Scholar 

  10. Kristal BS, Koopmans SJ, Jackson CT, Ikeno Y, Park BJ, Yu BP (1997) Oxidant-mediated repression of mitochondrial transcription in diabetic rats. Free Radic Biol Med 22(5):813–822

    Article  CAS  PubMed  Google Scholar 

  11. Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J (2000) Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26(3):163–176

    CAS  PubMed  Google Scholar 

  12. Romanenko A, Morimura K, Wanibuchi H, Salim EI, Kinoshita A, Kaneko M, Vozianov A, Fukushima S (2000) Increased oxidative stress with gene alteration in urinary bladder urothelium after the chernobyl accident. Int J Cancer 86(6):790–798

    Article  CAS  PubMed  Google Scholar 

  13. Barlet A, Albrecht J, Aubert A, Fischer M, Grof F, Grothuesmann HG, Masson JC, Mazeman E, Mermon R, Reichelt H et al (1990) Efficacy of Pygeum africanum extract in the medical therapy of urination disorders due to benign prostatic hyperplasia: evaluation of objective and subjective parameters. A placebo-controlled double-blind multicenter study. Wien Klin Wochenschr 102(22):667–673

    CAS  PubMed  Google Scholar 

  14. Donkervoort T, Sterling A, van Ness J, Donker PJ (1977) A clinical and urodynamic study of tadenan in the treatment of benign prostatic hypertrophy. Eur Urol 3(4):218–225

    CAS  PubMed  Google Scholar 

  15. Breza J, Dzurny O, Borowka A, Hanus T, Petrik R, Blane G, Chadha-Boreham H (1998) Efficacy and acceptability of tadenan (Pygeum africanum extract) in the treatment of benign prostatic hyperplasia (BPH): a multicentre trial in central Europe. Curr Med Res Opin 14(3):127–139

    Article  CAS  PubMed  Google Scholar 

  16. Levin RM, Das AK, Haugaard N, Novitsky Y, Horan P, Leggett RE, Riffaud JP, Longhurst PA (1997) Beneficial effects of tadenan therapy after 2 weeks of partial obstruction in the rabbit. Neurourol Urodyn 16(6):583–599

    Article  CAS  PubMed  Google Scholar 

  17. Levin RM, Das AK (2000) A scientific basis for the therapeutic effects of Pygeum africanum and Serenoa repens. Urol Res 28(3):201–209

    Article  CAS  PubMed  Google Scholar 

  18. Levin RM, Riffaud JP, Bellamy F, Rohrmann D, Habib M, Krasnopolsky L, Zhao Y, Wein AJ (1996) Protective effect of tadenan on bladder function secondary to partial outlet obstruction. J Urol 155(4):1466–1470

    Article  CAS  PubMed  Google Scholar 

  19. Mossman BT, Wilson GL, Craighead JE (1985) Chlorozocin. A diabetogenic analogue of streptozocin with dissimilar mechanisms of action on pancreatic beta cells. Diabetes 34(6):602–610

    Article  CAS  PubMed  Google Scholar 

  20. Bolaffi JL, Nowlain RE, Cruz L, Grodsky GM (1986) Progressive damage of cultured pancreatic islets after single early exposure to streptozocin. Diabetes 35(9):1027–1033

    Article  CAS  PubMed  Google Scholar 

  21. Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H (1988) Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis before diabetes onset. Diabetes 37(1):21–27

    Article  CAS  PubMed  Google Scholar 

  22. Persson K, Andersson KE (1992) Nitric oxide and relaxation of pig lower urinary tract. Br J Pharmacol 106(2):416–422

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Nature and Science Foundation of Shandong Province, China (no. Y2005C09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benkang Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Li, Y., Hou, G. et al. Pygeum africanum: effect on oxidative stress in early diabetes-induced bladder. Int Urol Nephrol 42, 401–408 (2010). https://doi.org/10.1007/s11255-009-9610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-009-9610-5

Keywords

Navigation